cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A025324 Numbers that are the sum of 3 nonzero squares in exactly 4 ways.

Original entry on oeis.org

129, 134, 146, 153, 161, 171, 189, 198, 201, 234, 243, 246, 249, 251, 254, 257, 261, 270, 278, 285, 290, 293, 294, 299, 339, 353, 362, 363, 365, 371, 378, 387, 390, 393, 395, 405, 406, 409, 411, 417, 429, 451, 454, 465, 467, 469, 473, 477, 485, 501, 502, 510, 514, 516
Offset: 1

Views

Author

Keywords

Examples

			299 is a term because 299 = 1^2 + 3^2 + 17^2 = 3^2 + 11^2 + 13^2 = 5^2 + 7^2 + 15^2 = 7^2 + 9^2 + 13^2 and there are no more such sums of four nonzero squares giving 182. - _David A. Corneth_, Feb 13 2019
		

Crossrefs

Programs

A025325 Numbers that are the sum of 3 nonzero squares in exactly 5 ways.

Original entry on oeis.org

194, 206, 230, 266, 269, 281, 350, 354, 381, 386, 389, 398, 401, 402, 413, 414, 419, 437, 449, 450, 470, 474, 482, 491, 525, 539, 554, 563, 579, 582, 585, 590, 601, 611, 630, 635, 638, 642, 646, 722, 769, 776, 781, 786, 819, 824, 829, 830, 834, 851, 867, 874, 878, 886
Offset: 1

Views

Author

Keywords

Crossrefs

A025326 Numbers that are the sum of 3 nonzero squares in exactly 6 ways.

Original entry on oeis.org

209, 297, 306, 314, 321, 326, 329, 342, 425, 426, 434, 441, 458, 459, 489, 497, 513, 530, 531, 534, 542, 546, 558, 561, 593, 602, 605, 633, 649, 650, 657, 659, 662, 665, 674, 675, 678, 681, 693, 698, 699, 705, 706, 713, 714, 725, 737, 738, 741, 746, 747, 750, 755, 758
Offset: 1

Views

Author

Keywords

Crossrefs

A025327 Numbers that are the sum of 3 nonzero squares in exactly 7 ways.

Original entry on oeis.org

341, 369, 461, 494, 506, 509, 545, 549, 581, 641, 654, 666, 677, 726, 731, 797, 806, 818, 821, 833, 882, 891, 893, 894, 899, 906, 934, 954, 978, 981, 998, 1011, 1017, 1019, 1050, 1067, 1069, 1086, 1094, 1098, 1101, 1133, 1158, 1194, 1211, 1233, 1294, 1331, 1346
Offset: 1

Views

Author

Keywords

Crossrefs

A025328 Numbers that are the sum of 3 nonzero squares in exactly 8 ways.

Original entry on oeis.org

374, 446, 486, 521, 566, 569, 621, 629, 686, 701, 710, 729, 749, 770, 789, 809, 810, 825, 849, 857, 869, 902, 945, 953, 969, 971, 1014, 1022, 1029, 1053, 1085, 1125, 1146, 1174, 1217, 1221, 1241, 1242, 1245, 1249, 1250, 1253, 1254, 1259, 1269, 1277, 1334, 1379
Offset: 1

Views

Author

Keywords

Crossrefs

A025329 Numbers that are the sum of 3 nonzero squares in exactly 9 ways.

Original entry on oeis.org

614, 626, 689, 774, 914, 929, 974, 989, 990, 1025, 1062, 1070, 1074, 1091, 1097, 1118, 1134, 1139, 1166, 1179, 1193, 1205, 1229, 1251, 1262, 1266, 1289, 1298, 1305, 1310, 1325, 1409, 1433, 1446, 1470, 1541, 1571, 1611, 1637, 1638, 1745, 1754, 1821, 1834
Offset: 1

Views

Author

Keywords

Crossrefs

A025330 Numbers that are the sum of 3 nonzero squares in exactly 10 ways.

Original entry on oeis.org

594, 734, 761, 794, 801, 846, 881, 909, 926, 965, 986, 1001, 1026, 1041, 1089, 1130, 1190, 1209, 1214, 1226, 1265, 1274, 1322, 1326, 1329, 1341, 1370, 1382, 1386, 1505, 1509, 1553, 1557, 1581, 1586, 1613, 1625, 1658, 1689, 1691, 1709, 1713, 1725, 1739
Offset: 1

Views

Author

Keywords

Crossrefs

A343968 Numbers that are the sum of three positive cubes in four or more ways.

Original entry on oeis.org

13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 161568, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262683, 262781, 266031
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			44946 =  7^3 + 12^3 + 35^3
      =  9^3 + 17^3 + 34^3
      = 11^3 + 24^3 + 31^3
      = 16^3 + 17^3 + 33^3
so 44946 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A025295 Numbers that are the sum of 2 nonzero squares in 4 or more ways.

Original entry on oeis.org

1105, 1625, 1885, 2125, 2210, 2405, 2465, 2665, 3145, 3250, 3445, 3485, 3625, 3770, 3965, 4225, 4250, 4420, 4505, 4625, 4745, 4810, 4930, 5125, 5185, 5330, 5365, 5525, 5785, 5945, 6205, 6290, 6305, 6409, 6500, 6565, 6625, 6890, 6970, 7085, 7225, 7250
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 7250; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i}]; Flatten[Position[t, ?(# >= 4 &)]] (* _T. D. Noe, Apr 07 2011 *)

A025369 Numbers that are the sum of 4 nonzero squares in 4 or more ways.

Original entry on oeis.org

52, 58, 63, 70, 76, 82, 84, 87, 90, 91, 93, 97, 98, 100, 102, 103, 105, 106, 108, 111, 114, 115, 117, 118, 119, 122, 123, 124, 126, 127, 130, 132, 133, 135, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 4}. Union of A025370 and A025360. - R. J. Mathar, Jun 15 2018
Previous Showing 11-20 of 20 results.