cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A025375 Numbers that are the sum of 4 nonzero squares in 10 or more ways.

Original entry on oeis.org

198, 202, 210, 234, 246, 247, 250, 252, 255, 258, 262, 268, 270, 273, 274, 279, 282, 285, 290, 292, 294, 295, 297, 298, 300, 301, 303, 306, 307, 310, 313, 315, 318, 319, 322, 324, 325, 327, 330, 333, 335, 338, 339, 340, 342, 343, 345, 346, 348, 350, 351, 354, 355, 357
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 10}. - R. J. Mathar, Jun 15 2018

A025368 Numbers that are the sum of 4 nonzero squares in 3 or more ways.

Original entry on oeis.org

28, 42, 52, 55, 58, 60, 63, 66, 67, 70, 73, 75, 76, 78, 79, 82, 84, 85, 87, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 132, 133, 134, 135, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >=3}. Union of A025369 and A025359.- R. J. Mathar, Jun 15 2018

A025370 Numbers that are the sum of 4 nonzero squares in 5 or more ways.

Original entry on oeis.org

82, 90, 100, 102, 103, 106, 108, 111, 114, 115, 117, 118, 122, 124, 126, 127, 130, 132, 133, 135, 138, 143, 145, 147, 148, 150, 151, 153, 154, 156, 157, 159, 162, 163, 165, 166, 167, 169, 170, 171, 172, 174, 175, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 5}. Union of A025371 and A025361. - R. J. Mathar, Jun 15 2018

A025373 Numbers that are the sum of 4 nonzero squares in 8 or more ways.

Original entry on oeis.org

130, 138, 150, 154, 162, 175, 178, 180, 186, 195, 196, 198, 202, 207, 210, 213, 214, 217, 218, 220, 222, 223, 225, 226, 228, 230, 231, 234, 235, 237, 238, 242, 243, 244, 246, 247, 250, 252, 253, 255, 258, 259, 262, 265, 266, 267, 268, 270, 271, 273, 274, 275, 276, 277
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    selQ[n_] := Length[ Select[ PowersRepresentations[n, 4, 2], Times @@ # != 0 &]] >= 8; Select[ Range[300], selQ] (* Jean-François Alcover, Oct 03 2013 *)

Formula

{n: A025428(n) >= 8}. - R. J. Mathar, Jun 15 2018

A025374 Numbers that are the sum of 4 nonzero squares in 9 or more ways.

Original entry on oeis.org

162, 178, 198, 202, 207, 210, 220, 223, 225, 226, 231, 234, 242, 243, 246, 247, 250, 252, 253, 255, 258, 262, 265, 266, 267, 268, 270, 271, 273, 274, 278, 279, 282, 283, 285, 286, 287, 290, 291, 292, 294, 295, 297, 298, 300, 301, 303, 306, 307, 309, 310, 313, 314, 315
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 9}. - R. J. Mathar, Jun 15 2018

A294297 Integers with precisely five partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

50, 52, 54, 58, 70, 73, 74, 75, 76, 84, 85, 86, 89, 91, 93, 101, 103, 109, 111, 113, 127, 131, 140, 142, 143, 151, 167, 191, 200, 208, 216, 232, 280, 296, 304, 336, 344, 560, 568, 800, 832, 864, 928, 1120, 1184, 1216, 1344, 1376, 2240, 2272, 3200, 3328, 3456
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 5.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ PowersRepresentations[n, 4, 2]; Select[ Range@ 3500, f@# == 5 &] (* Robert G. Wilson v, Oct 27 2017 *)

A025369 Numbers that are the sum of 4 nonzero squares in 4 or more ways.

Original entry on oeis.org

52, 58, 63, 70, 76, 82, 84, 87, 90, 91, 93, 97, 98, 100, 102, 103, 105, 106, 108, 111, 114, 115, 117, 118, 119, 122, 123, 124, 126, 127, 130, 132, 133, 135, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 4}. Union of A025370 and A025360. - R. J. Mathar, Jun 15 2018

A025360 Numbers that are the sum of 4 nonzero squares in exactly 4 ways.

Original entry on oeis.org

52, 58, 63, 70, 76, 84, 87, 91, 93, 97, 98, 105, 119, 123, 139, 140, 141, 142, 146, 155, 158, 185, 197, 206, 208, 221, 232, 233, 269, 280, 281, 304, 336, 392, 560, 568, 584, 632, 824, 832, 928, 1120, 1216, 1344, 1568, 2240, 2272, 2336, 2528, 3296, 3328, 3712, 4480
Offset: 1

Views

Author

Keywords

Formula

{n: A025428(n) = 4}. - R. J. Mathar, Jun 15 2018

A025361 Numbers that are the sum of 4 nonzero squares in exactly 5 ways.

Original entry on oeis.org

82, 100, 102, 103, 106, 108, 111, 114, 115, 117, 118, 122, 126, 127, 132, 143, 145, 151, 153, 167, 169, 181, 191, 194, 204, 211, 212, 227, 236, 251, 257, 328, 400, 408, 424, 432, 456, 472, 488, 504, 528, 776, 816, 848, 944, 1312, 1600, 1632, 1696, 1728, 1824, 1888
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025428.

A025362 Numbers that are the sum of 4 nonzero squares in exactly 6 ways.

Original entry on oeis.org

90, 124, 133, 147, 156, 157, 159, 163, 165, 166, 171, 174, 177, 188, 193, 201, 203, 205, 219, 239, 241, 249, 254, 260, 284, 293, 299, 329, 341, 360, 496, 624, 664, 696, 752, 1016, 1040, 1136, 1440, 1984, 2496, 2656, 2784, 3008, 4064, 4160, 4544, 5760, 7936
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025428, A025371 (at least 6 ways).

Programs

  • Python
    limit = 8000
    from functools import lru_cache
    sq = [k**2 for k in range(1, int(limit**.5)+2) if k**2 + 3 <= limit]
    sqs = set(sq)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in sqs else set()
      return set(tuple(sorted(t+(s,))) for s in sqs for t in findsums(n-s, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) == 6]) # Michael S. Branicky, Apr 20 2021
Previous Showing 11-20 of 40 results. Next