cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343972 Numbers that are the sum of four positive cubes in exactly four ways.

Original entry on oeis.org

1979, 2737, 3663, 4384, 4445, 4474, 4949, 5257, 5320, 5473, 5499, 5553, 5733, 5768, 5833, 5852, 6064, 6104, 6328, 6372, 6587, 6643, 6832, 6912, 6974, 7000, 7030, 7120, 7217, 7371, 7560, 7686, 7840, 8099, 8108, 8281, 8316, 8344, 8379, 8414, 8505, 8568, 8927, 9016, 9018, 9044, 9072, 9100, 9289, 9548, 9648, 9800
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Comments

This sequence varies from A343971 at term 8 because 5105 = 1^3 + 1^3 + 12^3 + 15^3 = 1^3 + 2^3 + 10^3 + 16^3 = 1^3 + 9^3 + 10^3 + 15^3 = 4^3 + 4^3 + 4^3 + 17^3 = 4^3 + 6^3 + 9^3 + 16^3.

Examples

			3663 is a term because 3663 = 1^3 + 10^3 + 11^3 + 11^3 = 2^3 + 4^3 + 6^3 + 15^3 = 2^3 + 9^3 + 9^3 + 13^3 = 4^3 + 7^3 + 8^3 + 14^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A025369 Numbers that are the sum of 4 nonzero squares in 4 or more ways.

Original entry on oeis.org

52, 58, 63, 70, 76, 82, 84, 87, 90, 91, 93, 97, 98, 100, 102, 103, 105, 106, 108, 111, 114, 115, 117, 118, 119, 122, 123, 124, 126, 127, 130, 132, 133, 135, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 4}. Union of A025370 and A025360. - R. J. Mathar, Jun 15 2018

A025379 Numbers that are the sum of 4 distinct nonzero squares in exactly 4 ways.

Original entry on oeis.org

142, 158, 162, 165, 182, 183, 195, 206, 207, 214, 215, 218, 226, 239, 243, 245, 259, 260, 262, 263, 289, 298, 299, 300, 301, 317, 324, 329, 331, 337, 355, 364, 372, 373, 389, 409, 428, 436, 452, 461, 484, 532, 548, 556, 568, 580, 632, 648, 728, 824, 856, 872, 904
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Select[Union[Select[Tally[Total/@Subsets[Range[nn]^2,{4}]], #[[2]] == 4&][[All,1]]],#<=nn^2-14&]] (* Harvey P. Dale, May 03 2020 *)

Formula

{n: A025443(n) = 4}. - R. J. Mathar, Jun 15 2018
Showing 1-3 of 3 results.