cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A343971 Numbers that are the sum of four positive cubes in four or more ways.

Original entry on oeis.org

1979, 2737, 3663, 4384, 4445, 4474, 4949, 5105, 5131, 5257, 5320, 5473, 5499, 5553, 5616, 5733, 5768, 5833, 5852, 5859, 6064, 6104, 6328, 6372, 6435, 6587, 6643, 6832, 6883, 6912, 6974, 7000, 7030, 7120, 7217, 7371, 7560, 7686, 7777, 7840, 8099, 8108, 8281, 8316, 8344, 8379, 8414, 8505, 8568, 8927, 9016, 9018
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			3663 = 1^3 + 10^3 + 11^3 + 11^3
     = 2^3 +  4^3 +  6^3 + 15^3
     = 2^3 +  9^3 +  9^3 + 13^3
     = 4^3 +  7^3 +  8^3 + 14^3
so 3663 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A343969 Numbers that are the sum of three positive cubes in exactly 4 ways.

Original entry on oeis.org

13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262781, 266031, 281728, 291213
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Comments

Differs from A343968 at term 20 because 161568 = 2^3 + 16^3 + 54^3 = 9^3 + 15^3 + 54^3 = 17^3 + 39^3 + 46^3 = 18^3 + 19^3 + 53^3 = 26^3 + 36^3 + 46^3.

Examples

			44946 is a term because 44946 = 7^3 + 12^3 + 35^3 = 9^3 + 17^3 + 34^3 = 11^3 + 24^3 + 31^3 = 16^3 + 17^3 + 33^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A343986 Numbers that are the sum of four positive cubes in exactly five ways.

Original entry on oeis.org

5105, 5131, 5616, 5859, 6435, 7777, 9315, 9737, 9793, 10017, 10250, 10458, 10936, 10962, 11000, 11060, 11088, 11592, 11664, 11781, 12168, 12229, 12285, 12320, 12385, 12392, 12707, 13384, 13734, 13832, 13904, 14183, 14239, 14833, 15176, 15596, 15624, 15752, 15759, 15778, 16093, 16289, 16354, 16480, 16569
Offset: 1

Views

Author

David Consiglio, Jr., May 06 2021

Keywords

Comments

Differs from A343987 at term 6 because 6883 = 2^3 + 2^3 + 2^3 + 19^3 = 2^3 + 5^3 + 15^3 + 15^3 = 3^3 + 8^3 + 8^3 + 18^3 = 4^3 + 11^3 + 14^3 + 14^3 = 5^3 + 11^3 + 11^3 + 16^3 = 8^3 + 9^3 + 9^3 + 17^3.

Examples

			5616 is a term because 5616 = 1^3 + 8^3 + 12^3 + 15^3 = 2^3 + 8^3 + 10^3 + 16^3 = 4^3 + 4^3 + 14^3 + 14^3 = 4^3 + 5^3 + 11^3 + 16^3 = 8^3 + 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])

A344035 Numbers that are the sum of five positive cubes in exactly four ways.

Original entry on oeis.org

1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1987, 2006, 2033, 2081, 2096, 2152, 2160, 2225, 2241, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2456, 2458, 2465, 2467, 2512, 2521, 2528, 2530, 2537, 2540, 2549, 2556, 2582
Offset: 1

Views

Author

David Consiglio, Jr., May 07 2021

Keywords

Comments

Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3

Examples

			1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
		

Crossrefs

Programs

  • Mathematica
    s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* Harvey P. Dale, Sep 15 2024 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A344353 Numbers that are the sum of four fourth powers in exactly four ways.

Original entry on oeis.org

236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Comments

Differs from A344352 at term 52 because 2147874 = 2^4 + 14^4 + 31^4 + 33^4 = 4^4 + 23^4 + 27^4 + 34^4 = 7^4 + 21^4 + 28^4 + 34^4 = 12^4 + 17^4 + 29^4 + 34^4 = 14^4 + 18^4 + 19^4 + 37^4.

Examples

			300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,200)]
    count = 1
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
        count += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A025405 Numbers that are the sum of 4 positive cubes in exactly 3 ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3717, 3736, 3753, 3815, 3941
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 3}. - R. J. Mathar, Jun 15 2018
Showing 1-6 of 6 results.