A026578 T(2n-1,n-2), T given by A026568.
1, 3, 13, 60, 225, 1148, 4235, 22296, 82425, 440308, 1634435, 8809736, 32819839, 178029138, 665162897, 3625521728, 13577768505
Offset: 2
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
First 5 rows: 1; 1, 1, 1; 1, 2, 3, 2, 1; 1, 2, 4, 4, 4, 2, 1; 1, 3, 7, 10, 12, 10, 7, 3, 1;
z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2 + 1]; t[n_, k_] := Floor[n/2 + 1] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}]; TableForm[u] (* A026552 array *) v = Flatten[u] (* A026552 sequence *)
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+2)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-2) flatten([[T(n,k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
First 5 rows: 1 1 ... 1 ... 1 1 ... 1 ... 2 ... 1 ... 1 1 ... 2 ... 4 ... 4 ... 4 ... 2 ... 1 1 ... 2 ... 5 ... 6 ... 8 ... 6 ... 5 ... 2 ... 1
z = 12; t[n_, 0]:= 1; t[n_, k_]:= 1/; k==2n; t[n_, 1]:= Floor[(n+1)/2]; t[n_, k_] := Floor[(n+1)/2] /; k==2n-1; t[n_, k_]:= t[n, k]= If[EvenQ[n], t[n-1, k-2] + t[n-1, k], t[n-1, k-2] + t[n-1, k-1] + t[n-1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2n}]; TableForm[u] (* A026519 array *) Flatten[u] (* A026519 sequence *)
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 19 2021
Comments