cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A165431 A transform of the central binomial coefficients.

Original entry on oeis.org

1, 2, 6, 16, 46, 132, 388, 1152, 3462, 10492, 32036, 98400, 303756, 941576, 2928936, 9138176, 28584006, 89609196, 281466916, 885620576, 2790812196, 8806560056, 27823745016, 88005102336, 278637450396, 883024243032, 2800748951208
Offset: 0

Views

Author

Paul Barry, Sep 18 2009

Keywords

Comments

Hankel transform is 2^n.

Crossrefs

Cf. A026569.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/Sqrt(8*x^3-4*x+1))); // G. C. Greubel, Oct 20 2018
  • Maple
    a := n -> `if`(n=0,1,2^n*hypergeom([1/2, 1/2-n/2, -n/2],[1, -n],-4)):
    seq(simplify(a(n)),n=0..25); # Peter Luschny, Jul 28 2016
  • Mathematica
    Table[Sum[Binomial[n-k,k]*2^(n-2*k)*Binomial[2*k,k], {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Jul 28 2016 *)
    CoefficientList[Series[1/Sqrt[8*x^3-4*x+1], {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 28 2016 *)
  • PARI
    x='x+O('x^30); Vec(1/sqrt(8*x^3-4*x+1)) \\ G. C. Greubel, Oct 20 2018
    

Formula

G.f.: 1/(1-2x-2x^2/(1-x^2/(1-2x-x^2/(1-x^2/(1-2x-x^2/(1-x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..n} C(n-k,k)*2^(n-2k)*C(2k,k).
From Vaclav Kotesovec, Jul 28 2016: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n - 1)*a(n-1) - 4*(2*n - 3)*a(n-3).
G.f.: 1/sqrt(8*x^3-4*x+1).
a(n) ~ sqrt(1 + 2/sqrt(5)) * (1+sqrt(5))^n / sqrt(Pi*n).
(End)
a(n) = 2^n*hypergeom([1/2, 1/2-n/2, -n/2],[1, -n],-4) for n>=1. - Peter Luschny, Jul 28 2016

A026570 a(n) = A026568(n,n-1), also a(n) = number of integer strings s(0),...,s(n) counted by A026568 such that s(n)=1.

Original entry on oeis.org

1, 1, 4, 7, 20, 43, 111, 259, 648, 1565, 3885, 9533, 23662, 58547, 145630, 362151, 903110, 2253615, 5633359, 14094035, 35304658, 88511733, 222115782, 557819793, 1401987930, 3526066273, 8874034647, 22346581133, 56304982154
Offset: 1

Views

Author

Keywords

Comments

Also a(n) = T'(n,n-1), T' given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T' such that s(n)=1.

Crossrefs

Formula

Conjecture: (n+1)*a(n) -2*n*a(n-1) +(-3*n-1)*a(n-2) +2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
If recurrence is correct then a(n) = (A026569(n+1)-A026569(n))/2 = A026585(n+1)/2. - Mark van Hoeij, Nov 29 2024

A383355 Expansion of 1/sqrt( (1-x) * (1-x-4*x^4) ).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 7, 9, 17, 31, 51, 77, 129, 227, 391, 641, 1067, 1829, 3157, 5351, 9033, 15399, 26471, 45349, 77387, 132293, 227153, 390379, 670013, 1149819, 1976595, 3402137, 5856157, 10079327, 17358491, 29918957, 51590271, 88971985, 153484661, 264898703, 457374335
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(2*k, k)*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*k,k) * binomial(n-3*k,k).
Previous Showing 11-13 of 13 results.