cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A147649 Binary prejudiced single Sierpinski modulo two Pascal shift: Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0]; Mod[If[n > 2, 2*Binomial[n - 2, m - 1]*p(n,m), 0],2]=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 6, 8, 6, 1, 1, 7, 16, 16, 7, 1, 1, 8, 19, 26, 19, 8, 1, 1, 9, 31, 45, 45, 31, 9, 1, 1, 10, 34, 86, 90, 86, 34, 10, 1, 1, 11, 50, 126, 196, 196, 126, 50, 11, 1, 1, 12, 53, 148, 266, 322, 266, 148, 53, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 09 2008

Keywords

Comments

Row sums are:{1, 2, 4, 12, 22, 48, 82, 172, 352, 768, 1282,...}.

Examples

			{1}, {1, 1}, {1, 2, 1}, {1, 5, 5, 1}, {1, 6, 8, 6, 1}, {1, 7, 16, 16, 7, 1}, {1, 8, 19, 26, 19, 8, 1}, {1, 9, 31, 45, 45, 31, 9, 1}, {1, 10, 34, 86, 90, 86, 34, 10, 1}, {1, 11, 50, 126, 196, 196, 126, 50, 11, 1}, {1, 12, 53, 148, 266, 322, 266, 148, 53, 12, 1}
		

Crossrefs

Programs

  • Mathematica
    p[n_, m_] := If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; Table[Table[Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1], 0], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0].
Previous Showing 21-21 of 21 results.