cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A256776 Primes of form n^2 + 256.

Original entry on oeis.org

257, 281, 337, 617, 881, 1097, 1217, 1481, 1777, 2281, 2657, 2857, 4481, 5297, 5881, 7481, 8537, 9281, 10457, 12577, 14897, 15881, 17417, 18481, 19577, 23057, 24281, 25537, 26177, 27481, 28817, 30881, 32297, 35977, 38281, 39857, 42281, 44777, 52697, 53617
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256776 n = a256776_list !! (n-1)
    a256776_list = [x | x <- map (+ 256) a000290_list, a010051' x == 1]
    
  • PARI
    list(lim)=if(lim<257,return([])); my(v=List(),t); forstep(n=1, sqrtint(lim\1-256), 2, if(isprime(t=n^2+256), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Aug 18 2017

A256777 Primes of form n^2 + 625.

Original entry on oeis.org

641, 661, 769, 821, 881, 1109, 1201, 1301, 1409, 2069, 2389, 2741, 3329, 3541, 3761, 3989, 4721, 6101, 6709, 7349, 7681, 8369, 9461, 12289, 14081, 14549, 16001, 18049, 19121, 20789, 25589, 28181, 31601, 32309, 33749, 35221, 35969, 37489, 38261, 39041, 39829
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256777 n = a256777_list !! (n-1)
    a256777_list = [x | x <- map (+ 625) a000290_list, a010051' x == 1]
    
  • Mathematica
    Select[Range[200]^2+625,PrimeQ] (* Harvey P. Dale, Aug 27 2025 *)
  • PARI
    list(lim)=if(lim<641,return([])); my(v=List(),t); forstep(n=4, sqrtint(lim\1-625), 2, if(isprime(t=n^2+625), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Aug 18 2017

A256834 Primes of form n^2 + 1296.

Original entry on oeis.org

1297, 1321, 1657, 2137, 2521, 3697, 5521, 6337, 7537, 8521, 10321, 11497, 13177, 15937, 16921, 18457, 23497, 24097, 25321, 34057, 35521, 40897, 43321, 45817, 47521, 58417, 59377, 88321, 90697, 94321, 98017, 106921, 109537, 117577, 127321, 131617, 138937
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256834 n = a256834_list !! (n-1)
    a256834_list = [x | x <- map (+ 1296) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[1,401,2]^2+1296,PrimeQ] (* Harvey P. Dale, Sep 18 2018 *)

A256835 Primes of form n^2 + 2401.

Original entry on oeis.org

2417, 2437, 2657, 2801, 3301, 3557, 3697, 4001, 4337, 4517, 7877, 10501, 11617, 12401, 13217, 19301, 20357, 20897, 26737, 28001, 29297, 33377, 36997, 38501, 40037, 44017, 48197, 49057, 64901, 70001, 77477, 78577, 86501, 90017, 92401, 104801, 107377, 108677
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256835 n = a256835_list !! (n-1)
    a256835_list = [x | x <- map (+ 2401) a000290_list, a010051' x == 1]

A256836 Primes of form n^2 + 4096.

Original entry on oeis.org

4177, 4217, 4457, 4721, 4937, 6121, 7121, 7577, 7817, 9137, 9721, 10337, 10657, 11321, 12377, 13121, 15121, 16417, 17321, 18257, 23417, 23977, 25121, 26297, 31321, 34721, 36137, 36857, 38321, 40577, 44497, 47777, 50321, 52057, 52937, 54721, 57457, 81937
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256836 n = a256836_list !! (n-1)
    a256836_list = [x | x <- map (+ 4096) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[1,300,2]^2+4096,PrimeQ] (* Harvey P. Dale, May 26 2025 *)

A256837 Primes of form n^2 + 6561.

Original entry on oeis.org

6577, 6661, 6961, 7237, 7717, 8161, 8677, 9697, 10657, 12037, 16561, 17377, 18661, 21937, 24517, 25057, 26161, 33457, 35461, 37537, 56737, 57637, 69061, 74161, 77317, 81637, 84961, 106417, 108961, 124897, 129061, 143461, 146437, 147937, 150961, 155557
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13)

Programs

  • Haskell
    a256837 n = a256837_list !! (n-1)
    a256837_list = [x | x <- map (+ 6561) a000290_list, a010051' x == 1]

A256838 Primes of form n^2 + 10000.

Original entry on oeis.org

10009, 10169, 10289, 10529, 10729, 11369, 11681, 12401, 12601, 12809, 13249, 13721, 14489, 15329, 16561, 16889, 17569, 17921, 19801, 20201, 21881, 22769, 23689, 26641, 27689, 29881, 30449, 32801, 33409, 34649, 35281, 37889, 38561, 39241, 39929, 48809, 53681
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256838 n = a256838_list !! (n-1)
    a256838_list = [x | x <- map (+ 10000) a000290_list, a010051' x == 1]

A256839 Primes of form n^2 + 14641.

Original entry on oeis.org

14657, 14741, 14897, 15217, 15541, 15797, 15937, 19541, 20117, 22037, 22741, 23857, 25457, 28097, 30517, 31541, 38977, 40241, 42197, 43541, 44917, 47041, 48497, 50741, 57077, 58741, 61297, 64817, 65717, 74177, 77141, 80177, 82241, 87541, 107057, 117041
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256839 n = a256839_list !! (n-1)
    a256839_list = [x | x <- map (+ 14641) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[500]^2+14641,PrimeQ] (* Harvey P. Dale, Mar 20 2017 *)

A256840 Primes of form n^2 + 20736.

Original entry on oeis.org

20857, 21577, 21961, 23761, 27961, 28657, 29017, 29761, 30937, 33961, 34897, 37897, 41761, 42937, 49297, 51361, 60337, 62761, 65257, 80761, 83737, 93097, 107761, 111337, 113761, 122497, 132961, 142537, 151057, 164377, 173617, 181537, 188017, 192961, 218761
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256841 (b=13).

Programs

  • Haskell
    a256840 n = a256840_list !! (n-1)
    a256840_list = [x | x <- map (+ 20736) a000290_list, a010051' x == 1]

A256841 Primes of form n^2 + 28561.

Original entry on oeis.org

28597, 28661, 28817, 28961, 29137, 29717, 30161, 30497, 30677, 31477, 32917, 33461, 34337, 34961, 35617, 37397, 38561, 42017, 42961, 47057, 49297, 49877, 51061, 55457, 60961, 62417, 64661, 66977, 70177, 70997, 72661, 74357, 75217, 76961, 78737, 86161, 93077
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12).

Programs

  • Haskell
    a256841 n = a256841_list !! (n-1)
    a256841_list = [x | x <- map (+ 28561) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[300]^2+28561,PrimeQ] (* Harvey P. Dale, Oct 18 2021 *)
Previous Showing 11-20 of 37 results. Next