cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 142 results. Next

A061934 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 5 (most significant digit on right, least significant zeros not written).

Original entry on oeis.org

1, 16, 19, 207, 350376, 723792, 853456, 1894016
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029498 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 17 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    cat = 0; k = 1; lst = {}; While[k < 100000, c = FromDigits@ Reverse@ IntegerDigits[k, 5]; cat = cat*10^Floor[ Log10[c] + 1] + c; If[ Mod[ FromDigits[ IntegerDigits@ cat, 5], k] == 0, AppendTo[lst, k]; Print[k]]; k++]; lst (* Robert G. Wilson v, Oct 17 2011 *)
    b = 5; c = {}; Select[Range[10^4], Divisible[FromDigits[
    c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)
  • PARI
    lista(nn, m=5) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(6)-a(8) from Lars Blomberg, Oct 17 2011

A061935 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 6 (most significant digit on right).

Original entry on oeis.org

1, 2, 3, 5, 11, 35, 55, 80, 135, 145, 160, 560, 735, 1016, 29787, 31360, 60095, 111625, 165705, 192140, 225280, 618701, 780230, 5503475
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029499 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Oct 17 2011]

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 6; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(22)-a(24) from Lars Blomberg, Oct 17 2011

A061936 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 7 (most significant digit on right).

Original entry on oeis.org

1, 3, 12, 27, 48, 72, 79, 363, 600, 1277, 1289, 1815, 15272, 18492, 38484, 83556, 87312, 148336, 205731, 222176, 420900, 549876, 607797, 624648, 716064, 5651851
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029500 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 17 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 7; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)
  • PARI
    lista(nn, m=7) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25 2002
a(23)-a(26) from Lars Blomberg, Oct 17 2011

A061937 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 8 (most significant digit on right).

Original entry on oeis.org

1, 2, 4, 6, 7, 18, 21, 35, 63, 105, 111, 159, 217, 1183, 1330, 1353, 1449, 2023, 7223, 8707, 10787, 13881, 58135, 1126478, 1135315, 1141795, 1938643, 5867454, 9251270
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029501 in that all least significant zeros are removed before concatenation.

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 8; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
6 more terms Sean A. Irvine, Sep 03 2009

A061938 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 9 (most significant digit on right).

Original entry on oeis.org

1, 3, 13, 32, 179, 4543, 5585, 11248, 16775, 29600, 56560, 444473, 4158800
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029502 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 20 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 9; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=9) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(12)-a(13) from Lars Blomberg, Oct 20 2011

A061940 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 11 (most significant digit on right).

Original entry on oeis.org

1, 5, 17, 20, 35, 40, 60, 75, 113, 120, 125, 395, 512, 1204, 2285, 5451, 5648, 12736, 36547, 113675, 1073605, 1466089, 3610208, 4076745
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029504 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 20 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 11; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn) = my(t=[]); for(k=1, nn, t=concat(t, Vecrev(digits(k/11^valuation(k, 11), 11))); if(Mod(fromdigits(t, 11), k)==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(21)-a(24) from Lars Blomberg, Oct 20 2011

A061941 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 12 (most significant digit on right).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 58, 77, 143, 209, 1009, 1280, 6555, 7564, 12793, 52162, 59147, 75801, 85460, 127710, 205439, 589003, 856075
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029505 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 20 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 12; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=12) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25, 2002
a(23) from Lars Blomberg, Oct 20 2011

A061942 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 13 (most significant digit on right, least significant zeros not written).

Original entry on oeis.org

1, 3, 9, 16, 27, 33, 48, 81, 144, 320, 880, 1041, 2304, 2645, 8189, 15368, 29040, 77864, 80192, 95568, 551520, 783408, 1973640, 2162592, 2352811, 2433557, 7598977
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029506 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 20 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 13; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=13) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25 2002
a(22)-a(27) from Lars Blomberg, Oct 20 2011

A061943 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 14 (most significant digit on right).

Original entry on oeis.org

1, 2, 6, 7, 10, 13, 39, 45, 65, 131, 195, 1690, 2005, 2106, 3211, 11615, 18498, 20881, 22360, 36335, 104858, 234506, 665223, 1274944, 1328487, 1425268, 2305498
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029507 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 22 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 14; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=14) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(23)-a(27) from Lars Blomberg, Oct 22 2011

A061944 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 15 (most significant digit on right).

Original entry on oeis.org

1, 3, 5, 7, 28, 48, 143, 148, 224, 392, 2079, 2716, 2999, 12537, 14392, 16384, 32124, 52073, 56747, 138203, 238847, 527989, 4580376, 5147667, 5276712, 6982808, 8947484
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029508 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 22 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 15; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=15) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25 2002
a(23)-a(27) from Lars Blomberg, Oct 22 2011
Previous Showing 91-100 of 142 results. Next