A029533
Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 16 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 3, 5, 9, 15, 19, 21, 43, 57, 255, 345, 385, 505, 1131, 1395, 1585, 7205, 11565, 38949, 270425, 684555, 8311925
Offset: 1
-
b = 16; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), Jun 04 2001
A029534
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 17 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 32, 175, 1216, 1248, 1568, 2400, 4384, 18555, 39328, 68704, 560159
Offset: 1
-
b = 17; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25, 2002
A029535
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 18 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 17, 323, 8429, 49127, 98753, 185509, 4300535, 8296187
Offset: 1
-
b = 18; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments from Larry Reeves (larryr(AT)acm.org), Jun 01 2001
a(5)-a(7) from Larry Reeves Jul 16 2001
A029537
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 20 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 19, 27, 67, 269, 399, 5627, 76439, 269549, 277951, 424441
Offset: 1
-
b = 20; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), Jun 04 2001
A029538
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 21 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 5, 40, 65, 80, 928, 1504, 4568, 4640, 4880, 5065, 11201, 31145, 40555, 89480, 812645, 1281320
Offset: 1
-
b = 21; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
A029539
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 22 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 3, 7, 9, 21, 51, 483, 687, 919, 1095, 1395, 3117, 3649, 25329, 46487, 47963, 65541, 71547, 182949, 228057, 231483, 759747, 2420481, 3156489, 3781071, 5290915
Offset: 1
-
b = 22; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), Jun 04 2001
A029540
Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 23 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 11, 35, 44, 121, 605, 2156, 8492, 8844, 9152, 58300, 134023, 172051, 181092, 190124, 200656, 261063, 287101, 746493, 779471, 3080351, 7868996, 8724407
Offset: 1
-
b = 23; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
A029541
Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 24 (most significant digit on right and removing all least significant zeros before concatenation).
Original entry on oeis.org
1, 23, 29, 169, 575, 887, 3151, 3473, 4495, 5395, 11431, 372077, 3543935
Offset: 1
-
b = 24; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
A061932
Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 3 (most significant digit on right, least significant zeros not written).
Original entry on oeis.org
1, 4, 7, 8, 11, 383, 1871, 3916, 7040, 10333, 56413, 63595, 248945, 988588, 3931771, 11027435
Offset: 1
Larry Reeves (larryr(AT)acm.org), May 24 2001
-
b = 3; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
A061933
Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 4 (most significant digit on right, least significant zeros not written).
Original entry on oeis.org
1, 2, 3, 9, 15, 21, 162, 495, 614, 813, 174913, 240389, 704162
Offset: 1
Larry Reeves (larryr(AT)acm.org), May 24 2001
-
b = 4; c = {}; Select[Range[10^4], Divisible[FromDigits[
c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)
-
lista(nn, m=4) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Comments