cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A177738 a(n) = floor( (x^n - x^(-n)) / (x - x^(-1)) ) where x = Pi-2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 20, 23, 26, 30, 35, 40, 46, 52, 60, 69, 78, 90, 103, 117, 134, 153, 175, 199, 228, 260, 297, 339, 387, 442, 505, 576, 658, 751, 858, 979, 1118, 1277, 1457, 1664, 1900, 2169, 2476, 2826
Offset: 0

Views

Author

Roger L. Bagula, May 12 2010

Keywords

Comments

The ratio a(n+1)/a(n) approaches Pi-2 as n approaches infinity, and is lower than even Salem polynomial expansions based on A073011.
The idea is the emulation of quadratic beta integer domains using a transcendental number base with a ratio below A073011.

Crossrefs

Programs

  • Mathematica
    Clear[a, n, b]; b = Pi - 2; a[n_] = (b^n - b^(-n))/(b - b^(-1));
    Table[Floor[a[n]], {n, 0, 50}]

Extensions

Undefined terminology removed from the definition - The Assoc. Eds. of the OEIS, May 14 2010

A225396 Expansion of 1/(1 - x - x^2 + x^10 - x^12).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 142, 229, 369, 595, 959, 1546, 2492, 4017, 6475, 10438, 16826, 27123, 43722, 70479, 113611, 183139, 295217, 475885, 767119, 1236583, 1993351, 3213249, 5179704, 8349597, 13459412, 21696349, 34974155, 56377758, 90880011
Offset: 0

Views

Author

Roger L. Bagula, May 06 2013

Keywords

Comments

Limiting ratio is 1.61198..., the largest real root of -1 + x^2 - x^10 - x^11 + x^12 = 0.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 + x^10 - x^12), {x, 0, 50}], x]
    LinearRecurrence[{1,1,0,0,0,0,0,0,0,-1,0,1},{1,1,2,3,5,8,13,21,34,55,88,142},50] (* Harvey P. Dale, Apr 12 2014 *)

Formula

a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=8, a(6)=13, a(7)=21, a(8)=34, a(9)=55, a(10)=88, a(11)=142, a(n)=a(n-1)+a(n-2)- a(n-10)+ a(n-12). - Harvey P. Dale, Apr 12 2014

A173244 G.f. (x^10 +x^9 +x^8 +.... +x+1) / (x^10 +x^9 -x^7 -x^6 -x^5 -x^4 -x^3 +x +1).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 18, 21, 25, 29, 34, 41, 47, 56, 66, 77, 91, 107, 126, 148, 174, 205, 241, 283, 334, 392, 461, 543, 638, 751, 883, 1039, 1222, 1437, 1691, 1989, 2339, 2752, 3237, 3807, 4479, 5268, 6197, 7289, 8574, 10086, 11863
Offset: 0

Views

Author

Roger L. Bagula, Feb 13 2010

Keywords

Comments

Limiting ratio is: a(n+1)/a(n)->1.1762808182599176...

Crossrefs

Programs

  • Mathematica
    p[x_] = Sum[x^i, {i, 0, 10}]/(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1);;
    a = Table[SeriesCoefficient[ Series[p[x], {x, 0, 50}], n], {n, 0, 50}]

Formula

G.f.: (1-x^11)/(1-x^2-x^3+x^8+x^9-x^11).

Extensions

Removed unused variables - The Assoc. Editors of the OEIS, Feb 24 2010
Previous Showing 31-33 of 33 results.