cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A068890 a(1) = 1; a(n) = smallest nontrivial n-th power with property that digits alternate in parity.

Original entry on oeis.org

1, 4, 8, 16, 32, 729, 2187, 256
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2002

Keywords

Comments

Conjecture: the sequence is finite.
For all n>=1, (n^10 mod 1000) is one of {0, 1, 24, 49, 176, 201, 224, 249, 376, 401, 424, 449, 576, 601, 624, 625, 649, 776, 801, 824, 849, 976}. None of these have digits of alternating parity, thus a(10) does not exist. - Benjamin Chaffin, Nov 24 2021

Crossrefs

A068888 Squares with property that digits alternate in parity individually as well as in concatenation with previous terms.

Original entry on oeis.org

1, 4, 9, 25, 49, 81, 256, 361, 676, 729, 4761, 6561, 41616, 56169, 69696, 72361, 87616, 96721, 212521, 214369, 290521, 436921, 452929, 458329, 474721, 670761, 690561, 2143296, 3470769, 4145296, 5230369, 8503056, 9078169, 21058921, 21836929, 21874329, 25230529
Offset: 0

Views

Author

Amarnath Murthy, Mar 20 2002

Keywords

Crossrefs

Cf. A030152.

Extensions

Missing 81 and 452929 inserted, incorrect 93636 removed, and more terms from Sean A. Irvine, Mar 22 2024

A229040 Fibonacci numbers in which parity of the decimal digits alternates.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 21, 34, 89, 610, 987, 4181, 6765
Offset: 1

Views

Author

Jonathan Vos Post, Sep 12 2013

Keywords

Comments

No more values through F(19000). - R. J. Mathar, Jun 30 2020

Crossrefs

Programs

  • Maple
    isA030141 := proc(n)
        dgs := convert(n,base,10) ;
        for i from 2 to nops(dgs) do
            if modp(op(i,dgs),2) = modp(op(i-1,dgs),2) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for i from 0 do
        f := combinat[fibonacci](i) ;
        if isA030141(f) then
            print(f) ;
        end if;
    end do: # R. J. Mathar, Mar 13 2015

Formula

A000045 INTERSECTION A030141.
Previous Showing 21-23 of 23 results.