cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A239015 Exponents m such that the decimal expansion of 11^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 36, 41, 366, 488, 4357, 69137, 89371, 143907, 542116, 2431369, 5877361, 8966861, 121915452, 123793821, 221788016, 709455085, 1571200127, 2640630712, 6637360862, 64994336645, 74770246842
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A001020.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan Wechsler and Franklin T. Adams-Watters.

Examples

			Illustration of initial term, with the 0 enclosed in parentheses:
n, position of 0, 11^a(n)
1, 2, (0)1
2, 3, (0)11
3, 4, (0)121
4, 5, (0)1331
5, 6, (0)14641
6, 7, (0)1771561
7, 8, (0)19487171
8, 9, (0)214358881
9, 10, (0)2357947691
10, 11, (0)3138428376721
11, 12, (0)34522712143931
12, 13, (0)379749833583241
13, 14, (0)4177248169415651
14, 15, (0)45949729863572161
15, 16, (0)5559917313492231481
16, 17, 3091268053287(0)672635673352936887453361
...
- _N. J. A. Sloane_, Jan 16 2020
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[11, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 40000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(28)-a(34) from Bert Dobbelaere, Jan 22 2019
a(35)-a(36) from Chai Wah Wu, Jan 16 2020

A195985 Least prime such that p^2 is a zeroless n-digit number.

Original entry on oeis.org

2, 5, 11, 37, 107, 337, 1061, 3343, 10559, 33343, 105517, 333337, 1054133, 3333373, 10540931, 33333359, 105409309, 333333361, 1054092869, 3333333413, 10540925639, 33333333343, 105409255363, 333333333367, 1054092553583, 3333333333383, 10540925534207
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2011

Keywords

Examples

			a(1)^2=4, a(2)^2=25, a(3)^2=121, a(4)^2=1369 are the least squares of primes with 1, 2, 3 resp. 4 digits, and these digits are all nonzero.
a(5)=107 since 101^2=10201 and 103^2=10609 both contain a zero digit, but 107^2=11449 does not.
a(1000)=[10^500/3]+10210 (500 digits), since primes below sqrt(10^999) = 10^499*sqrt(10) ~ 3.162e499 have squares of less than 1000 digits, between sqrt(10^999) and 10^500/3 = sqrt(10^1000/9) ~ 3.333...e499 they have at least one zero digit. Finally, the 7 primes between 10^500/3 and a(1000) also happen to have a "0" digit in their square, but not so
  a(1000)^2 = 11111...11111791755555...55555659792849
  = [10^500/9]*(10^500+5) + 6806*10^500+104237294.
		

Crossrefs

Programs

  • PARI
    a(n)={ my(p=sqrtint(10^n\9)-1); until( is_A052382(p^2), p=nextprime(p+2));p}

A272269 Numbers n such that 11^n does not contain all ten decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 34, 38, 41
Offset: 1

Views

Author

Altug Alkan, Apr 24 2016

Keywords

Comments

Inspiration was the simple form of 11 that is concatenation of 1 and 1. With similar motivation, A130696 focuses on the values of 2^n = (1 + 1)^n. Since this sequence exists in base 10, 11^n*10 is simply concatenation of 11^n and 0. So 11^(n+1) = concat(11^n, 0) + 11^n while 2^(n+1) = 2^n + 2^n.
A030706 is a subsequence. So note that if there is currently no proof of finiteness of A030706, then there is no proof yet of the finiteness of this sequence.

Examples

			25 is a term because 11^25 = 108347059433883722041830251 that does not contain digit 6.
26 is not a term because 11^26 = 11^25*10 + 11^25 = 1083470594338837220418302510 + 108347059433883722041830251 = 1191817653772720942460132761 that contains all ten decimal digits.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 120], AnyTrue[DigitCount[11^#], # == 0 &] &] (* Michael De Vlieger, Apr 24 2016, Version 10 *)
  • PARI
    isA171102(n) = 9<#vecsort(Vecsmall(Str(n)), , 8);
    lista(nn) = for(n=0, nn, if(!isA171102(11^n), print1(n, ", ")));
    
  • PARI
    select( is_A272269(n)=#Set(digits(11^n))<10 ,[0..100]) \\ M. F. Hasler, May 18 2017

A050731 Decimal expansion of 11^n contains no pair of consecutive equal digits (probably finite).

Original entry on oeis.org

0, 2, 4, 5, 7, 9, 10, 12, 16
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			11^16 = 45949729863572161.
		

Crossrefs

Cf. A030706.

A252482 Exponents n such that the decimal expansion of the power 12^n contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Conjectured to be finite.
See A245853 for the actual powers 12^a(n).

Crossrefs

For zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A245852, A240945 (k=9), A195946 (x=11), A245853, A195945; A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, this sequence A252482, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))
Previous Showing 21-25 of 25 results.