cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A076592 First occurrence of n as a term in the continued fraction for log(2).

Original entry on oeis.org

2, 3, 4, 31, 41, 6, 30, 90, 89, 16, 188, 126, 29, 42, 365, 395, 71, 48, 106, 379, 484, 2097, 521, 1240, 391, 1208, 300, 118, 688, 296, 180, 75, 1843, 1532, 1547, 1303, 1721, 1545, 120, 917, 881, 2082, 111, 615, 866, 311, 952, 2095, 1293, 1065, 6140
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=6200,cfl2},cfl2=ContinuedFraction[Log[2],nn];Table[Position[cfl2,n,1,1],{n,60}]]//Flatten (* Harvey P. Dale, Mar 09 2023 *)
  • PARI
    default(realprecision, 1500); v=contfrac(log(2)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

A076593 First occurrence of n as a term in the continued fraction for log(3).

Original entry on oeis.org

1, 5, 8, 29, 25, 40, 3, 264, 4, 2, 122, 177, 36, 115, 14, 193, 12, 176, 54, 655, 444, 527, 394, 491, 823, 204, 349, 170, 704, 105, 1331, 10, 129, 558, 20, 2361, 1680, 2402, 1420, 155, 457, 99, 1575, 118, 370, 270, 2486, 1695, 1572, 666, 680, 658, 5603, 5287
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • PARI
    default(realprecision, 1500); v=contfrac(log(3)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

A076594 First occurrence of n as a term in the continued fraction for log(5).

Original entry on oeis.org

1, 20, 6, 11, 19, 12, 24, 26, 32, 66, 112, 45, 68, 318, 64, 52, 58, 41, 101, 62, 1168, 299, 291, 189, 74, 110, 122, 200, 287, 755, 734, 73, 1619, 71, 415, 268, 191, 1700, 27, 17, 547, 468, 3224, 3510, 690, 78, 3064, 258, 487, 1801, 2138, 3911, 155, 811, 1121
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Position[ContinuedFraction[Log[5],6000],n,{1},1],{n,60}]] (* Harvey P. Dale, Jun 26 2013 *)
  • PARI
    default(realprecision, 1500); v=contfrac(log(5)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

A076595 First occurrence of n as a term in the continued fraction for the cube root of 2.

Original entry on oeis.org

1, 15, 2, 7, 4, 64, 56, 10, 59, 14, 148, 18, 117, 12, 32, 638, 578, 112, 229, 371, 218, 91, 878, 2209, 139, 108, 182, 975, 484, 314, 859, 1977, 454, 597, 1016, 205, 1425, 136, 315, 4201, 51, 3661, 1009, 143, 2188, 3532, 381, 550, 151, 786, 2815, 1444, 654
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    With[{cf=ContinuedFraction[Surd[2,3],4500]},Flatten[Table[Position[cf,n,{1},1],{n,60}]]] (* Harvey P. Dale, Jul 01 2015 *)
  • PARI
    default(realprecision, 1500); v=contfrac(2^(1/3)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)
Previous Showing 11-14 of 14 results.