cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A033010 Numbers each of whose runs of digits in base 12 has length 2.

Original entry on oeis.org

13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 1872, 1898, 1911, 1924, 1937, 1950, 1963, 1976, 1989, 2002, 2015, 3744, 3757, 3783, 3796, 3809, 3822, 3835, 3848, 3861, 3874, 3887, 5616, 5629, 5642, 5668, 5681, 5694, 5707, 5720, 5733, 5746, 5759, 7488, 7501
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014
Numbers without repeating adjacent digits for which all digits are divisible by 13, in base 144. Consequently there are 11^n n-digit members of this sequence (base 144) and so (11^(n+1)-1)/10 members of this sequence below 144^n. - Charles R Greathouse IV, Feb 02 2014

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 12]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)
  • Python
    from sympy.ntheory import digits
    from itertools import groupby
    def ok(n):
      return all(len(list(g))==2 for k, g in groupby(digits(n, 12)[1:]))
    print(list(filter(ok, range(1, 7502)))) # Michael S. Branicky, Apr 27 2021

Formula

a(n) = 13*A043316(n) (= 13*n for n < 12). - M. F. Hasler, Feb 02 2014

A033004 Every run of digits of n in base 6 has length 2.

Original entry on oeis.org

7, 14, 21, 28, 35, 252, 266, 273, 280, 287, 504, 511, 525, 532, 539, 756, 763, 770, 784, 791, 1008, 1015, 1022, 1029, 1043, 1260, 1267, 1274, 1281, 1288, 9079, 9086, 9093, 9100, 9107, 9576, 9583, 9597, 9604, 9611, 9828, 9835
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 6]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)

Formula

a(n) = 7*A043310(n) (= 7*n for n<6). - M. F. Hasler, Feb 02 2014

A033005 Every run of digits of n in base 7 has length 2.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 392, 408, 416, 424, 432, 440, 784, 792, 808, 816, 824, 832, 1176, 1184, 1192, 1208, 1216, 1224, 1568, 1576, 1584, 1592, 1608, 1616, 1960, 1968, 1976, 1984, 1992, 2008, 2352, 2360, 2368, 2376, 2384, 2392
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014

Programs

  • Mathematica
    Select[Range[2500],Union[Length/@Split[IntegerDigits[#,7]]]=={2}&] (* Harvey P. Dale, Oct 24 2011 *)

Formula

a(n) = 8*A043311(n) (= 8*n for n<7). - M. F. Hasler, Feb 02 2014

A033006 Every run of digits of n in base 8 has length 2.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 576, 594, 603, 612, 621, 630, 639, 1152, 1161, 1179, 1188, 1197, 1206, 1215, 1728, 1737, 1746, 1764, 1773, 1782, 1791, 2304, 2313, 2322, 2331, 2349, 2358, 2367, 2880, 2889, 2898, 2907, 2916, 2934
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 8]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)

Formula

a(n) = 9*A043312(n) (= 9*n for n<8). - M. F. Hasler, Feb 02 2014

Extensions

Typo in name corrected by Vincenzo Librandi, Feb 05 2014

A033009 Every run of digits of n in base 11 has length 2.

Original entry on oeis.org

12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 1452, 1476, 1488, 1500, 1512, 1524, 1536, 1548, 1560, 1572, 2904, 2916, 2940, 2952, 2964, 2976, 2988, 3000, 3012, 3024, 4356, 4368, 4380, 4404, 4416, 4428, 4440, 4452, 4464, 4476
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 11]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)

Formula

a(n) = 12*A043315(n) (= 12*n for n<11). - M. F. Hasler, Feb 02 2014

A033011 Every run of digits of n in base 13 has length 2.

Original entry on oeis.org

14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 2366, 2394, 2408, 2422, 2436, 2450, 2464, 2478, 2492, 2506, 2520, 2534, 4732, 4746, 4774, 4788, 4802, 4816, 4830, 4844, 4858, 4872, 4886, 4900, 7098, 7112, 7126, 7154
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases. See A033015 through A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 02 2014

Programs

  • Mathematica
    Select[Range[8000],Union[Length/@Split[IntegerDigits[#,13]]]=={2}&] (* Harvey P. Dale, Feb 27 2013 *)

Formula

a(n) = 14*A043317(n) (= 14*n for n<13). - M. F. Hasler, Feb 02 2014

A033012 Every run of digits of n in base 14 has length 2.

Original entry on oeis.org

15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 2940, 2970, 2985, 3000, 3015, 3030, 3045, 3060, 3075, 3090, 3105, 3120, 3135, 5880, 5895, 5925, 5940, 5955, 5970, 5985, 6000, 6015, 6030, 6045, 6060, 6075, 8820
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 04 2014

Programs

  • Mathematica
    Select[Range[9000],Union[Length/@Split[IntegerDigits[#,14]]]=={2}&] (* Harvey P. Dale, Apr 26 2013 *)

Formula

a(n) = 15*A043318(n) (= 15*n for n<14). - M. F. Hasler, Feb 02 2014

A033013 Every run of digits of n in base 15 has length 2.

Original entry on oeis.org

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 3600, 3632, 3648, 3664, 3680, 3696, 3712, 3728, 3744, 3760, 3776, 3792, 3808, 3824, 7200, 7216, 7248, 7264, 7280, 7296, 7312, 7328, 7344, 7360, 7376, 7392
Offset: 1

Views

Author

Keywords

Comments

See A043291 and A033001 through A033014 for the analog in other bases, A033015 - A033029 for the variants with run lengths >= 2. - M. F. Hasler, Feb 04 2014

Programs

  • Mathematica
    Select[Range[10000], Union[Length/@Split[IntegerDigits[#, 15]]]=={2}&] (* Vincenzo Librandi, Feb 05 2014 *)

Formula

a(n) = 16*A043319(n) (= 16n for n<15). - M. F. Hasler, Feb 02 2014

A043308 a(n)=A033002(n)/5.

Original entry on oeis.org

1, 2, 3, 16, 18, 19, 32, 33, 35, 48, 49, 50, 257, 258, 259, 288, 289, 291, 304, 305, 306, 513, 514, 515, 528, 530, 531, 560, 561, 562, 769, 770, 771, 784, 786, 787, 800, 801, 803, 4112, 4114, 4115, 4128, 4129, 4131, 4144, 4145
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 16, have all digits less than 4 and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • PARI
    is_A043308(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],16))[2]<4 && n[1]%4!=n[2])||return) \\ M. F. Hasler, Feb 03 2014

A043312 a(n) = A033006(n)/9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 64, 66, 67, 68, 69, 70, 71, 128, 129, 131, 132, 133, 134, 135, 192, 193, 194, 196, 197, 198, 199, 256, 257, 258, 259, 261, 262, 263, 320, 321, 322, 323, 324, 326, 327, 384, 385, 386, 387, 388, 389, 391, 448, 449
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which, written in base 64, have only digits 0 through 7, and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014

Crossrefs

Programs

  • Maple
    f:= proc(n) local i;
          seq(64*n+i, i= subs(n mod 64 = NULL, [$0..7]))
    end proc:
    A:= $1..7: R:= [A]:
    for d from 2 to 3 do
      R:= map(f, R);
      A:= A, op(R);
    od:
    A; # Robert Israel, Jun 11 2019
  • PARI
    is_A043312(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],64))[2]<8 && n[1]%8!=n[2])||return) \\ M. F. Hasler, Feb 03 2014
Previous Showing 11-20 of 30 results. Next