cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A104257 Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2

Views

Author

Ralf Stephan, Mar 05 2005

Keywords

Comments

Sums of distinct powers of a. Numbers having only {0,1} in a-ary representation.

Examples

			Array begins:
  2,  3,  4,  5,  6,  7,   8,   9, ...
  3,  4,  9, 10, 12, 13,  27,  28, ...
  4,  5, 16, 17, 20, 21,  64,  65, ...
  5,  6, 25, 26, 30, 31, 125, 126, ...
  6,  7, 36, 37, 42, 43, 216, 217, ...
  7,  8, 49, 50, 56, 57, 343, 344, ...
  8,  9, 64, 65, 72, 73, 512, 513, ...
  9, 10, 81, 82, 90, 91, 729, 730, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
    T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
    Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
  • PARI
    T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
  • Python
    def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
    print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
    

Formula

T(a, n) = (1/(a-1))*Sum_{j>=1} floor((n+2^(j-1))/2^j) * ((a-2)*a^(j-1) + 1).
T(a, n) = (1/(a-1))*Sum_{j=1..n} ((a-2)*a^A007814(j) + 1).
G.f. of a-th row: (1/(1-x)) * Sum_{k>=0} a^k*x^2^k/(1+x^2^k).
Recurrence: T(a, 2n) = a*T(a, n), T(a, 2n+1) = a*T(a, n) + 1, T(a, 0) = 0.

A151665 G.f.: Product_{k>=0} (1 + 3*x^(4^k)).

Original entry on oeis.org

1, 3, 0, 0, 3, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 27, 0, 0, 27, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151667 Number of partitions of n into distinct powers of 5.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

Programs

  • Mathematica
    m = 130; A[_] = 1;
    Do[A[x_] = (1+x) A[x^5] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 19 2019 *)

Formula

G.f.: Prod_{k >= 0 } (1+x^(5^k)). Exponents give A033042.
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^5). - Ilya Gutkovskiy, Aug 12 2019

A151668 G.f.: Product_{k>=0} (1 + 2*x^(3^k)).

Original entry on oeis.org

1, 2, 0, 2, 4, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 4, 8, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 4, 8, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151669 G.f.: Product_{k>=0} (1 + 2*x^(4^k)).

Original entry on oeis.org

1, 2, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151670 G.f.: Product_{k>=0} (1 + 2*x^(5^k)).

Original entry on oeis.org

1, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151671 G.f.: Product_{k >= 0} (1 + 3*x^(5^k)).

Original entry on oeis.org

1, 3, 0, 0, 0, 3, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 0, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151672 G.f.: Product_{k>=0} (1 + 4*x^(3^k)).

Original entry on oeis.org

1, 4, 0, 4, 16, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 16, 64, 0, 64, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 16, 64, 0, 64, 256, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151673 G.f.: Product_{k>=0} (1 + 4*x^(4^k)).

Original entry on oeis.org

1, 4, 0, 0, 4, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 64, 0, 0, 64, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151674 G.f.: Product_{k >= 0} (1 + 4*x^(5^k)).

Original entry on oeis.org

1, 4, 0, 0, 0, 4, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Previous Showing 11-20 of 37 results. Next