cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A366158 Number of distinct determinants of 3 X 3 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 5, 25, 77, 179, 355, 609, 995, 1497, 2167, 2999, 4069, 5289, 6841, 8595, 10661, 13023, 15777, 18795, 22305, 26085, 30397, 35107, 40381, 45929, 52247, 58929, 66287, 74139, 82767, 91643, 101701, 112013, 123235
Offset: 0

Views

Author

Robert P. P. McKone, Oct 02 2023

Keywords

Comments

These determinants a(n) equivalently represent the leading coefficient (coefficient of term with degree 0) of the characteristic polynomials for such matrices, thereby providing a direct measure and lower bound of the uniqueness of these polynomials within this matrix class.
The maximal determinant counted by a(n) is A033431(n) = 2*n^3.

Crossrefs

Cf. A058331 (distinct determinants for 2 X 2 matrices).
Cf. A365926.
Cf. A033431 (maximal determinant).
Cf. A097400 (distinct consecutive entries in 3 X 3 matrix).

Programs

  • Mathematica
    mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; detMat[n_Integer?Positive] := detMat[n] = Det[mat[n]] // FullSimplify; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[ParallelTable[Evaluate[detMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}]]]]; Table[a[3, n], {n, 0, 9}]
  • Python
    from itertools import product
    def A366158(n): return len({a[0]*(a[4]*a[8] - a[5]*a[7]) - a[1]*(a[3]*a[8] - a[5]*a[6]) + a[2]*(a[3]*a[7] - a[4]*a[6]) for a in product(range(n+1),repeat=9)}) # Chai Wah Wu, Oct 06 2023

Extensions

a(19)-a(26) from Robin Visser, May 08 2025
a(27)-a(33) from Robin Visser, Aug 26 2025

A304159 a(n) = 2*n^3 - 4*n^2 + 6*n - 2 (n>=1).

Original entry on oeis.org

2, 10, 34, 86, 178, 322, 530, 814, 1186, 1658, 2242, 2950, 3794, 4786, 5938, 7262, 8770, 10474, 12386, 14518, 16882, 19490, 22354, 25486, 28898, 32602, 36610, 40934, 45586, 50578, 55922, 61630, 67714, 74186, 81058, 88342, 96050, 104194, 112786, 121838, 131362, 141370, 151874, 162886, 174418, 186482, 199090
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) is the first Zagreb index of the Barbell graph B(n) (n>=3).
The Barbell graph B(n) is defined as two copies of the complete graph K(n) (n>=3), connected by a bridge.
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the Barbell graph B(n) is M(B(n),x,y) = (n-1)*(n-2)*x^{n-1}*y^{n-1} + 2*(n-1)*x^{n-1}*y^n + x^n*y^n.

Crossrefs

Programs

  • Maple
    seq(2*n^3-4*n^2+6*n-2, n = 1 .. 40);
  • Mathematica
    Table[2n^3-4n^2+6n-2 ,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,10,34,86},50] (* Harvey P. Dale, Mar 05 2023 *)
  • PARI
    Vec(2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018
    
  • PARI
    a(n) = 2*n^3-4*n^2+6*n-2; \\ Altug Alkan, May 09 2018

Formula

a(n) = 2 * A100705(n-1).
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. (End)
a(n) = A033431(n) - A002943(n-1) = A033431(n) - 2*A014105(n-1). - Omar E. Pol, May 09 2018

A055378 Table read by antidiagonals: T(n,k) = n^trinv(k)+n^(k-((trinv(k)*(trinv(k)-1))/2)) where trinv (k) = floor((1+sqrt(1+8*k))/2) and with 0^0 = 1.

Original entry on oeis.org

2, 1, 2, 0, 2, 2, 1, 2, 3, 2, 0, 2, 4, 4, 2, 0, 2, 5, 6, 5, 2, 1, 2, 6, 10, 8, 6, 2, 0, 2, 8, 12, 17, 10, 7, 2, 0, 2, 9, 18, 20, 26, 12, 8, 2, 0, 2, 10, 28, 32, 30, 37, 14, 9, 2, 1, 2, 12, 30, 65, 50, 42, 50, 16, 10, 2, 0, 2, 16, 36, 68, 126, 72, 56, 65, 18, 11, 2, 0, 2, 17, 54, 80, 130
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Examples

			a(50) = T(5,4) = 5^2+5^1 = 30
		

Crossrefs

Rows include A010054 (apart from initial term), A007395 and A048645 (offset). Subsequent rows are sums of two powers of a given number and also rewritings of A052216 from a particular base to base 10. Columns include A007395, A000027, A005843, A002522, A002378, A001105, A001093, A034262, A011379, A033431, A002523.

Formula

T(n, k) = n^A025581(k)+n^A002262(k)
Previous Showing 21-23 of 23 results.