cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A329404 Interleave 2*n*(3*n-1), (2*n+1)*(6*n+1) for n >= 0.

Original entry on oeis.org

0, 1, 4, 21, 20, 65, 48, 133, 88, 225, 140, 341, 204, 481, 280, 645, 368, 833, 468, 1045, 580, 1281, 704, 1541, 840, 1825, 988, 2133, 1148, 2465, 1320, 2821, 1504, 3201, 1700, 3605, 1908, 4033, 2128, 4485, 2360, 4961
Offset: 0

Views

Author

Paul Curtz, Nov 13 2019

Keywords

Comments

a(n) + a(n+3) = 21, 21, 69, 69, 153, 153, ...
Hexagonal spiral for A026741:
.
33--17--35--18
/
16 8--17---9--19
/ / \
31 15 5---3---7 10
/ / / \ \
15 7 2 0===1===4==21==>
\ \ \ / / /
29 13 3---1 9 11
\ \ / /
14 6--11---5 23
\ /
27--13--25--12
.
a(n) is the horizontal sequence from 0.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,4,21,20,65},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3) + O(x^45))) \\ Colin Barker, Nov 13 2019

Formula

a(n) = n * A165355(n-1).
From Colin Barker, Nov 13 2019: (Start)
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5.
a(n) = (1/4)*(-1)*((-3 + (-1)^n)*n*(-2+3*n)). (End)
From Amiram Eldar, Dec 27 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi/(8*sqrt(3)) + 9*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi/(8*sqrt(3)) - 3*log(3)/8. (End)

A180855 Square array read by antidiagonals: T(m,n) is the Wiener index of the banana tree B(n,k) (n>=1, k>=2). B(n,k) is the graph obtained by taking n copies of a star graph on k nodes and connecting with an edge one leaf of each of these n stars with an additional node.

Original entry on oeis.org

4, 20, 10, 48, 56, 18, 88, 138, 108, 28, 140, 256, 270, 176, 40, 204, 410, 504, 444, 260, 54, 280, 600, 810, 832, 660, 360, 70, 368, 826, 1188, 1340, 1240, 918, 476, 88, 468, 1088, 1638, 1968, 2000, 1728, 1218, 608, 108, 580, 1386, 2160, 2716, 2940, 2790, 2296, 1560, 756, 130
Offset: 1

Views

Author

Emeric Deutsch, Sep 24 2010

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

Examples

			T(1,2)=4 because the banana tree B(1,2) reduces to a path on 3 nodes, where the distances are 1, 1, and 2.
Square array T(n,k) begins:
4,10,18,28,40,54,70;
20,56,108,176,260,360,476;
48,138,270,444,660,918,1218;
88,256,504,832,1240,1728,2296;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: n*(k-1)*(3*n*k-2*k+2) end proc: for n to 10 do seq(T(n+2-j, j), j = 2 .. n+1) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := n*(k - 1)*(3*n*k - 2*k + 2);
    Table[T[n - k + 2, k], {n, 1, 10}, {k, 2, n + 1}] // Flatten (* Jean-François Alcover, Aug 26 2024 *)

Formula

T(n,k) = n(k-1)(3nk-2k+2).
T(n,2) = A033579(n).
T(n,4) = A060787(n+2).
The Wiener polynomial of the tree B(n,k) is W(n,k,t)=(1/2)nt(a+bt+ct^2+dt^3+et^4+ft^5), where a=2k, b=3+n+k^2-3k, c=2n+2k-6, d=(n-1)(2k-3), e=2(n-1)(k-2), and f=(n-1)(k-2)^2.

A192030 Square array read by antidiagonals: W(n,p) (n>=1, p>=1) is the Wiener index of the graph G(n,p) obtained in the following way: consider n copies of a star tree with p-1 edges, add a vertex to their union, and connect this vertex with the roots of the star trees.

Original entry on oeis.org

1, 4, 4, 9, 20, 9, 16, 48, 48, 16, 25, 88, 117, 88, 25, 36, 140, 216, 216, 140, 36, 49, 204, 345, 400, 345, 204, 49, 64, 280, 504, 640, 640, 504, 280, 64, 81, 368, 693, 936, 1025, 936, 693, 368, 81, 100, 468, 912, 1288, 1500, 1500, 1288, 912, 468, 100, 121, 580, 1161, 1696, 2065, 2196, 2065, 1696, 1161, 580, 121
Offset: 1

Views

Author

Emeric Deutsch, Jun 29 2011

Keywords

Comments

W(n,1)=W(1,n)=n^2=A000290(n).
W(n,2)=W(2,n)=A033579(p)=2*n*(3*n-1).
W(p,n)=W(n,p).

Examples

			W(2,2)=20 because G(2,2) is the path graph with 4 edges; its Wiener index is 4*1+3*2+2*3+1*4=20.
The square array starts:
1,4,9,16,25,36,49,...;
4,20,48,88,140,204,280,...;
9,48,117,216,345,504,693,...;
16,88,216,400,640,936,1288,...;
		

Crossrefs

Programs

  • Maple
    W := proc (n, p) options operator, arrow; n*p*(2*n*p-n-p+1) end proc: for n to 11 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields sequence in triangular form
    W := proc (n, p) options operator, arrow; n*p*(2*n*p-n-p+1) end proc: for n to 7 do seq(W(n, p), p = 1 .. 10) end do; # yields the first 10 entries in each of the first 7 rows

Formula

W(n,p)=n*p*(2*n*p-n-p+1).
The Wiener polynomial of the graph G(n,p) is a*t+b*t^2+c*t^3+d*t^4, where a=n*p, b=(1/2)*n*(n+p^2-p-1), c=n*(n-1)*(p-1), d=(1/2)*n*(n-1)*(p-1)^2.
Previous Showing 21-23 of 23 results.