cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A193426 Expansion of (a(q^2) + a(q^3) - 2*a(q^6)) / 6 in powers of q where a() is a cubic AGM function.

Original entry on oeis.org

0, 1, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, -1, 0, 0, 2, 0, 0, -1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 2, 1, 0, 0, -2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, -1, 0, 3, 0, 0, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Jul 27 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q^2 + q^3 - q^6 + q^8 + q^9 + q^12 + 2*q^14 - q^18 + 2*q^21 - q^24 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^9]^2 / EllipticTheta[ 2, 0, q^3], {q, 0, 2 n}];
  • PARI
    {a(n) = my(A, p, e, q, f); if( n<1, 0, f = valuation( n, 2); q = n / 2^f; A = factor(q); if( q%6 == 1, f%2, (-1)^f) *  prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==3, 1, if( p%6==1, e+1, !(e%2))))))};
    
  • PARI
    {a(n) = my(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^18 + A)^4 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^9 + A)^2), n))};

Formula

Expansion of (b(q^6)^2 / b(q^3) - b(q^2)) / 3 = (c(q^6) / c(q^3)) * (c(q^3) + c(q^6)) / 3 = q^2 * psi(q) * psi(q^9)^2 / psi(q^3) in powers of q where b(), c() are cubic AGM functions and psi() is a Ramanujan theta function.
Expansion of eta(q^2)^2 * eta(q^3) * eta(q^18)^4 / (eta(q) * eta(q^6)^2 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 1, -1, 0, -1, 1, 0, 1, -1, 2, -1, 1, 0, 1, -1, 0, -1, 1, -2, ...].
Moebius transform is period 18 sequence [ 0, 1, 1, -1, 0, -3, 0, 1, 0, -1, 0, 3, 0, 1, -1, -1, 0, 0, ...].
a(3*n) = A093829(n). a(6*n) = -A093829(n). a(6*n + 2) = A033687(n). A(6*n + 3) = A033762(n). a(3*n + 1) = a(6*n + 5) = 0. a(4*n) = a(n).

A229143 Expansion of (b(q^3) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 0, -3, 1, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 0, 1, 0, 0, 2, 0, -6, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -6, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, 2, 0, 0, 0, 0, -6, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -3, 2, 0, 0, 2, 0, 0, 0, 0, -6
Offset: 1

Views

Author

Michael Somos, Sep 23 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Rogers and Zudilin (2011) page 6: "This identity can be verified by eliminating b(q) with b(q^{1/3}) - b(q) = 3c(q^3) - c(q)."
The zeros of the g.f. A(q) where q = exp(2 Pi i t) are of the form t = (m/2 + sqrt(-3)/18) / n where m is an odd integer and n is in A004611. For example, (1/2 + sqrt(-3)/18) / 1, (1/2 + sqrt(-3)/18) / 7, (5/2 + sqrt(-3)/18) / 13.

Examples

			G.f. = q - 3*q^3 + q^4 + 2*q^7 - 3*q^12 + 2*q^13 + q^16 + 2*q^19 - 6*q^21 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(27), 1), 85); A[2] - 3*A[4] + A[5] + 2*A[8] - 3*A[13] + 2*A[14] + A[15]; /* Michael Somos, Jun 16 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3]^4 - QPochhammer[ q^9] QPochhammer[ q]^3) / (3 QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9]^4 - 3 q^2 QPochhammer[ q^3] QPochhammer[ q^27]^3) / (QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
    f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1 + (-1)^e) / 2]; f[3, 1] = -3; f[3, e_] := 0; a[n_] := Times @@ f @@@ FactorInteger[n]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, Sep 04 2023 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3, -3 * (e==1), p%3==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A)^4 - 3 * x^2 * eta(x^3 + A) * eta(x^27 + A)^3) / (eta(x^3 + A) * eta(x^9 + A)), n))};
    

Formula

Expansion of c(q^3) / 3 - c(q^9) in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - 4*a(q^3) + 3*a(q^9)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of (eta(q^3)^4 - eta(q)^3 * eta(q^9)) / (3 * eta(q^3) * eta(q^9)) in powers of q.
a(n) is multiplicative with a(3) = -3, a(3^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e) / 2 if p == 2 (mod 3).
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 2) = a(4*n + 2) = a(9*n) = a(9*n + 6) = 0. a(3*n + 1) = A033687(n). a(9*n + 3) = -3 * A033687(n).
From Michael Somos, Jun 16 2015: (Start)
a(4*n) = a(n). a(6*n + 1) = A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(n) = Sum_{d|n} A259024(n/d) * [ 0, 1, 0, -2, 0, 1][mod(d, 6) + 1]. (End)

A253626 Expansion of psi(q^2) * f(q, q^2)^2 / f(q, q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 3, 0, 3, 2, 3, 1, 0, 0, 3, 2, 6, 0, 3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, 6, 0, 0, 2, 3, 0, 0, 0, 3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, 3, 3, 3, 0, 6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, 3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, 6, 0, 6, 2, 0, 1, 0, 0, 6, 0, 6
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q + 3*q^2 + q^3 + 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 86); A[1] + A[2] + 3*A[3] + A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ (-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] QPochhammer[ -q^3] (QPochhammer[ q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-12, d) + if(d%2, 0, 2 * kronecker(-12, d/2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^3 / ( eta(x + A) * eta(x^2 + A) * eta(x^6 + A) * eta(x^12 + A) ), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(-q^3)^2 / (psi(-q) * psi(-q^3)) = f(q) * f(q^3) * (chi(-q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (a(q) + 3*a(q^2) + 2*a(q^4)) / 6 = b(q^4) * (-b(q) + 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^3)^3 * eta(q^4)^3 / ( eta(q) * eta(q^2) * eta(q^6) * eta(q^12) ) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, -1, 1, 0, 1, -1, -2, 2, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, 0, -1, 0, 1, 0, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) is multiplicative with a(0) = 1, a(2^e) = 3 if e > 0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*2) * (q^k + q^(3*k)) / (1 + q^(2*k) + q^(4*k)).
G.f.: Product_{k>0} (1 - q^(3*k))^3 * (1 - q^(4*k))^3 / ( (1 - q^k) * (1 - q^(2*k)) * (1 - q^(6*k)) * (1 - q^(12*k)) ).
a(n) = (-1)^n * A253625(n). a(2*n) = A107760(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(4*n + 1) = A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Jan 21 2024

A255648 Expansion of (a(q) + a(q^2) + a(q^3) + a(q^6) - 4) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 0, 1, 0, 2, 2, 0, 4, 0, 0, 2, 1, 2, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 0, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 2, 4, 0, 0, 0, 2, 2, 4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 4, 2, 0, 2, 0, 0, 4, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, May 06 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^6 + 2*q^7 + q^8 + 2*q^9 + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ { 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0}[[Mod[ d, 18, 1]]], { d, Divisors[ n]}]];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1][d%18 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 2, p%6==1, e+1, 1-e%2)))};

Formula

Expansion of (b(q^2)^2 / b(q) + b(q^6)^2 / b(q^3) - 2) / 3 in powers of q where b() is a cubic AGM theta function.
Expansion of (psi(q)^3 / psi(q^3) + psi(q^3)^3 / psi(q^9) - 2) / 3 in powers of q where psi() is a Ramanujan theta function.
Moebius transform is period 18 sequence [ 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k))^2 + (x^(3*k) + x^(9*k)) / (1 + x^(6*k))^2.
a(2*n) = a(n). a(3*n) = 2 * A035178(n). a(3*n + 1) = A033687(n). a(6*n + 5) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 22 2023

A286952 Expansion of Product_{j>=1} (1 - x^j)/(1 - x^(3*j))^3.

Original entry on oeis.org

1, -1, -1, 3, -3, -2, 9, -8, -6, 22, -19, -13, 50, -42, -29, 104, -86, -57, 209, -170, -113, 398, -320, -208, 737, -586, -380, 1320, -1041, -666, 2311, -1808, -1152, 3949, -3069, -1938, 6629, -5120, -3221, 10920, -8390, -5242, 17724, -13549, -8435, 28342
Offset: 0

Views

Author

Seiichi Manyama, May 17 2017

Keywords

Crossrefs

3rd column of A286950.
Cf. A033687.

A115235 Expansion of eta(q)^2*eta(q^9)*eta(q^18)/(eta(q^2)*eta(q^3)) in powers of q.

Original entry on oeis.org

1, -2, 0, 1, 0, 0, 2, -2, 0, 0, 0, 0, 2, -4, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, -4, 0, 2, 0, 0, 2, -2, 0, 0, 0, 0, 2, -4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, -2, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 2, -4, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, -6, 0, 1, 0, 0, 2, -4, 0
Offset: 1

Views

Author

Michael Somos, Jan 17 2006

Keywords

Examples

			q - 2*q^2 + q^4 + 2*q^7 - 2*q^8 + 2*q^13 - 4*q^14 + q^16 + 2*q^19 + ...
		

Crossrefs

Cf. A033687.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (-1+3*(-1)^e)/2; f[3, e_] := 0; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 04 2023 *)
  • PARI
    {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^9+A)*eta(x^18+A)/eta(x^2+A)/eta(x^3+A), n))}

Formula

Euler transform of period 18 sequence [ -2, -1, -1, -1, -2, 0, -2, -1, -2, -1, -2, 0, -2, -1, -1, -1, -2, -2, ...].
Moebius transform is period 18 sequence [1, -3, -1, 3, -1, 3, 1, -3, 0, 3, -1, -3, 1, -3, 1, 3, -1, 0, ...].
a(n) is multiplicative with a(2^e) = (-1+3*(-1)^e)/2, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
a(3n+1) = A033687(n), a(6n+2) = -2*A033687(n), a(3n) = a(6n+5) = 0. a(4n) = a(n).
G.f.: Sum_{k} x^(3k+1)*(1-2*x^(3k+1))/(1-x^(18k+6)).

A131140 Counts 3-wild partitions. In general p-wild partitions of n are defined so that they are in bijection with geometric equivalence classes of degree n algebra extensions of the p-adic field Q_p. Here two algebra extensions are equivalent if they become isomorphic after tensoring with the maximal unramified extension of Q_p.

Original entry on oeis.org

1, 1, 2, 9, 11, 19, 83, 99, 172, 1100, 1244, 2250, 8687, 10683, 18173, 67950, 82785, 140825, 665955, 780030, 1367543, 4867750, 6027860, 10149291, 35453711, 43581422
Offset: 0

Views

Author

David P. Roberts (roberts(AT)morris.umn.edu), Jun 19 2007

Keywords

Comments

In general, the number of p-wild partitions of n is equal to the number of partitions of n if and only if n

Examples

			a(3) = 9, since there are four quadratic algebras over Q_3 up to geometric equivalence, namely the unramified algebra Q_3 times Q_3 times Q_3, the tamely ramified algebras Q_3 times Q_3[x]/(x^2-3) and two, two and three wildly ramified algebras with discriminants 3^3, 3^4 and 3^5 respectively.
		

Crossrefs

Formula

The generating function is Product_{j>=0} theta_3(2^((3^j-1)/2)*x)^(3^j) where theta_3(y) is the generating function for 3-cores A033687. [This appears to be incorrect - Joerg Arndt, Apr 06 2013]

A193514 Expansion of phi(-q)^2 * phi(-q^9) / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 4, 2, -4, 0, 4, -8, 4, 2, 0, 0, 2, -8, 8, 0, -4, 0, 4, -8, 0, 4, 0, 0, 4, -4, 8, 2, -8, 0, 0, -8, 4, 0, 0, 0, 2, -8, 8, 4, 0, 0, 8, -8, 0, 0, 0, 0, 2, -12, 4, 0, -8, 0, 4, 0, 8, 4, 0, 0, 0, -8, 8, 4, -4, 0, 0, -8, 0, 0, 0, 0, 4, -8, 8, 2, -8, 0, 8, -8, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, -16, 0, 4, 0, 0, 4, -8
Offset: 0

Author

Michael Somos, Jul 29 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 4*q^2 + 2*q^3 - 4*q^4 + 4*q^6 - 8*q^7 + 4*q^8 + 2*q^9 + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^9] / EllipticTheta[ 4, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * if( n%3==1, -2, 1) * sumdiv( n, d, -(-1)^d * kronecker( -3, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A) * eta(x^9 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^18 + A)), n))};

Formula

Expansion of (-2 * a(q) +2 * a(q^2) +3 * a(q^3)) / 3 = b(q) * (b(q) + 2 * b(q^2)) / (3 * b(q^2)) in powers of q where a(), b() are cubic AGM functions.
Expansion of eta(q)^4 * eta(q^6) * eta(q^9)^2 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [ -4, -2, -2, -2, -4, -1, -4, -2, -4, -2, -4, -1, -4, -2, -2, -2, -4, -2, ...].
Moebius transform is period 18 sequence [ -4, 8, 6, -8, 4, -6, -4, 8, 0, -8, 4, 6, -4, 8, -6, -8, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 432^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A193426.
a(3*n) = A123330(n). a(3*n + 1) = -4 * A033687(n). a(6*n + 1) = -4 * A097195(n). a(6*n + 2) = 4 * A033687(n). a(6*n + 3) = 2 * A033762(n). a(6*n + 4) = 4 * A033687(n). a(8*n + 2) = 4 * A112604(n). a(8*n + 6) = 4 * A112605(n). a(6*n + 5) = 0. a(4*n) = a(n).

A253623 Expansion of phi(q) * f(q, q^2)^2 / f(q^2, q^4) in powers of q where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 6, 8, 6, 4, 0, 0, 0, 8, 12, 0, 0, 0, 6, 8, 0, 8, 0, 0, 6, 4, 12, 4, 0, 0, 0, 8, 6, 0, 0, 0, 0, 8, 12, 8, 0, 0, 12, 8, 0, 0, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 12, 8, 0, 0, 0, 8, 12, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 8, 12, 4, 0, 0, 12, 8, 0, 4, 0, 0
Offset: 0

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 6*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + 8*x^13 + ...
		

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 83); A[1] + 4*A[2] + 6*A[3] + 4*A[4];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ (1 + Mod[k, 2]) q^k / (1 - q^k + q^(2 k)), {k, n}], {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6]), {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^n Sum[(-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (n/d%2 + 1) * (-1)^(d\3) * (d%3>0) ))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^4 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3/2*(e%2), if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of phi(q)^2 * phi(-q^3)^2 / (phi(-q^2) * phi(-q^6)) = psi(q) * psi(-q^3) * (chi(q) * chi(-q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of (2*a(q) + 3*a(q^2) - 2*a(q^4)) / 3 = (b(q) - 2*b(q^4)) * (b(q) - 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^8 * eta(q^3)^4 * eta(q^12) / (eta(q)^4 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 4, -4, 0, -1, 4, -4, 4, -1, 0, -4, 4, -2, ...].
Moebius transform is period 12 sequence [ 4, 2, 0, -6, -4, 0, 4, 6, 0, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253625.
a(n) = 4*b(n) where b() is multiplicative with b(2^e) = (3/4) * (1 - (-1)^e) if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (1 + (k mod 2)) * q^k / (1 - q^k + q^(2*k)).
G.f.: Product_{k>0} (1 + q^k) * (1 - q^(2*k)) * (1 - q^(3*k)) * (1 + q^(6*k)) / ((1 + q^(2*k)) * (1 - q^k + q^(2*k)))^3.
a(n) = (-1)^n * A244339(n). a(2*n) = A004016(n). a(2*n + 1) = 4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = 4 * A097195(n). a(6*n + 2) = 6 * A033687(n). a(6*n + 4) = a(6*n = 5) = 0.
a(12*n + 1) = 4 * A123884(n). a(12*n + 2) = 6 * A097195(n). a(12*n + 3) = 4 * A112604(n). a(12*n + 7) = 8 * A121361(n). a(12*n + 9) = 4 * A112605(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Dec 30 2023

A258724 Expansion of f(-x)^11 / f(-x^3) + 27 * x * f(-x^3)^11 / f(-x) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 16, 71, 0, -337, 256, -601, 0, 625, 1136, 194, 0, -529, 0, -3214, 0, 2640, -5392, 0, 0, 7199, 4096, 2903, 0, -1249, -9616, 4679, 0, 0, 0, -23927, 0, 9071, 10000, -19849, 0, 22034, 18176, 0, 0, 14641, 3104, -10942, 0, -42671, 0, 24359, 0, 0, -8464, -42121
Offset: 0

Author

Michael Somos, Jun 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731.

Examples

			G.f. = 1 + 16*x + 71*x^2 - 337*x^4 + 256*x^5 - 601*x^6 + 625*x^8 + ...
G.f. = q + 16*q^4 + 71*q^7 - 337*q^13 + 256*q^16 - 601*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^11 / QPochhammer[ x^3] + 27 x QPochhammer[ x^3]^11 / QPochhammer[ x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^11 / eta(x^3 + A) + 27 * x * eta(x^3 + A)^11 / eta(x + A), n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); n = 3*n + 1; if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3, 0, p%3==2, if( e%2, 0, p^(2*e)), for( x=1, sqrtint(4*p\27), if( issquare(4*p - 27*x^2, &y), break)); y = (y^2 - 2*p)^2 - 2*p^2; a0=1; a1=y; for( i=2, e, x = y*a1 - p^4*a0; a0=a1; a1=x); a1)))};

Formula

Expansion of q^(-1/3) * (eta(q)^11 / eta(q^3) + 27 * eta(q^3)^11 / eta(q)) in powers of q.
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(2*e) if p == 2 (mod 3), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 3) where b(p) = (y^2 - 2*p)^2 - 2*p^2, 4*p = y^2 + 27*x^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(5/2) (t/i)^5 f(t) where q = exp(2 Pi i t).
a(4*n + 3) = 0.
Previous Showing 41-50 of 54 results. Next