cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A260945 Expansion of (2*b(q^4) - b(q) - b(q^2)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, 1, -2, -1, 0, -2, 2, 1, -2, 0, 0, 2, 2, 2, 0, -1, 0, -2, 2, 0, -4, 0, 0, -2, 1, 2, -2, -2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, -4, 0, 0, -4, 2, 0, 0, 0, 0, 2, 3, 1, 0, -2, 0, -2, 0, 2, -4, 0, 0, 0, 2, 2, -4, -1, 0, 0, 2, 0, 0, 0, 0, -2, 2, 2, -2, -2, 0, -4, 2
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 - 2*x^3 - x^4 - 2*x^6 + 2*x^7 + x^8 - 2*x^9 + 2*x^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 80); A[2] + A[3] - 2*A[4] - A[5] - 2*A[7] + 2*A[8] + A[9] - 2*A[10] + 2*A[13] + 2*A[14] + 2*A[15] - A[17] - 2*A[19] - 4*A[20];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, -1, -1, 0}[[Mod[ d, 6, 1]]] {1, 0, -2, 0, 1, 0}[[Mod[ n/d, 6, 1]]], {d, Divisors @ n}]]
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # == 2, -(-1)^#2, # == 3, -2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(9/2)] EllipticTheta[ 3, 0, q] / (2 q^(1/4) QPochhammer[ q^6]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 1, 0, -1, -1][d%6 + 1] * [0, 1, 0, -2, 0, 1][n\d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, -2, p%6==5, 1-e%2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^18 + A)), n))};
    

Formula

Expansion of (a(q) + a(q^2) - 3*a(q^3) - 2*a(q^4) - 3*a(q^6) + 6*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q * phi(q) * psi(-q) * psi(-q^9) / f(-q^6) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^4 * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^6) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, -3, 1, -2, 1, -2, 1, -2, 0, -3, 1, -1, 1, -3, 1, -2, 1, -2, 1, -2, 1, -3, 1, -1, 1, -3, 0, -2, 1, -2, 1, -2, 1, -3, 1, -2, ...].
Moebius transform is period 36 sequence [ 1, 0, -3, -2, -1, 0, 1, 2, 0, 0, -1, 6, 1, 0, 3, -2, -1, 0, 1, 2, -3, 0, -1, -6, 1, 0, 0, -2, -1, 0, 1, 2, 3, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -(-1)^e if e>0, a(3^e) = -2, if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123863.
a(2*n) = A112848(n). a(2*n + 1) = A123530(n). a(3*n) = -2 * A113447(n). a(3*n + 1) = A227696(n).
a(4*n) = - A112848(n). a(4*n + 1) = A253243(n). a(4*n + 2) = A123530(n). a(4*n + 3) = -2 * A246838(n).
a(6*n) = -2 * A093829(n). a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n). a(6*n + 3) = -2 * A033762(n). a(6*n + 5) = 0.
a(8*n + 1) = A260941(n). a(8*n + 2) = A253243(n). a(8*n + 3) = -2 * A260943(n). a(8*n + 4) = - A123530(n). a(8*n + 5) = 2 * A260942(n). a(8*n + 6) = -2 * A246838(n). a(8*n + 7) = 2 * A260944(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024

A260958 Expansion of (a(q) - 3*a(q^2) + 3*a(q^3) - 4*a(q^4) + 3*a(q^6)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, -3, 4, -3, 0, 0, 2, -3, 4, 0, 0, 0, 2, -6, 0, -3, 0, 0, 2, 0, 8, 0, 0, 0, 1, -6, 4, -6, 0, 0, 2, -3, 0, 0, 0, 0, 2, -6, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, -3, 0, -6, 0, 0, 0, -6, 8, 0, 0, 0, 2, -6, 8, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, -6, 4, -6, 0, 0, 2, 0, 4
Offset: 0

Views

Author

Michael Somos, Aug 05 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - 3*x^2 + 4*x^3 - 3*x^4 + 2*x^7 - 3*x^8 + 4*x^9 + 2*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, {1, -3, 4, -3, 1, 0}[[Mod[ n, 6, 1]]] Sum[ {1, 0, 0, 0, -1, 0}[[Mod[ d, 6, 1]]], {d, Divisors @ n}]];
    a[ n_] := If[ n < 1 || Mod[n, 6] == 0, 0, Times @@ (Which[ # == 1, 1, # == 2, -2 - Mod[#2, 2], # == 3, 4, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] EllipticTheta[ 3, 0, x^3] QPochhammer[ -x^3, x^6]^2 EllipticTheta[ 2, 0, x^(9/2)] / (2 x^(1/8) QPochhammer[-x, x^2]^2 EllipticTheta[ 3, 0, x^9]), {x, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, [0, 1, -3, 4, -3, 1][n%6+1] * sumdiv(n, d, [0, 1, 0, 0, 0, -1][n/d%6+1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^9 * eta(x^9 + A) * eta(x^36 + A)^2 / (eta(x^2 + A)^4 * eta(x^3 + A)^4 * eta(x^12 + A)^4 * eta(x^18 + A)^3), n))};

Formula

Expansion of q * f(q) * phi(q^3) * chi(q^3)^2 * psi(q^9) / (chi(q)^2 * phi(q^9)) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q)^3 * eta(q^4)^2 * eta(q^6)^9 * eta(q^9) * eta(q^36)^2 / (eta(q^2)^4 * eta(q^3)^4 * eta(q^12)^4 * eta(q^18)^3) in powers of q.
Euler transform of period 36 sequence [ -3, 1, 1, -1, -3, -4, -3, -1, 0, 1, -3, -2, -3, 1, 1, -1, -3, -2, -3, -1, 1, 1, -3, -2, -3, 1, 0, -1, -3, -4, -3, -1, 1, 1, -3, -2, ...].
Moebius transform is period 36 sequence [ 1, -4, 3, 0, -1, 0, 1, 0, 0, 4, -1, 0, 1, -4, -3, 0, -1, 0, 1, 0, 3, 4, -1, 0, 1, -4, 0, 0, -1, 0, 1, 0, -3, 4, -1, 0, ...].
a(2*n) = A113448(n). a(3*n + 1) = A122861(n). a(6*n) = 0. a(6*n + 1) = A097195(n). a(6*n + 2) = a(12*n + 4) = -3 * A033687(n). a(6*n + 3) = 4 * A033762(n). a(6*n + 5) = a(12*n + 10) = 0.

A261884 Expansion of (a(q) - a(q^2) - 2*a(q^3) + 2*a(q^6)) / 6 in powers of q where a() is a cubic AGM function.

Original entry on oeis.org

1, -1, -1, 1, 0, 1, 2, -1, -1, 0, 0, -1, 2, -2, 0, 1, 0, 1, 2, 0, -2, 0, 0, 1, 1, -2, -1, 2, 0, 0, 2, -1, 0, 0, 0, -1, 2, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, -1, 3, -1, 0, 2, 0, 1, 0, -2, -2, 0, 0, 0, 2, -2, -2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, -2, -1, 2, 0, 2, 2, 0
Offset: 1

Views

Author

Michael Somos, Sep 04 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x - x^2 - x^3 + x^4 + x^6 + 2*x^7 - x^8 - x^9 - x^12 + 2*x^13 + ...
		

Crossrefs

Cf. A033687, A033762, A093829, A097195, A035178 (apparently gives the absolute values).

Programs

  • Mathematica
    A004016[q_] := (QPochhammer[q]^3 + 9*q*QPochhammer[q^9]^3)/ QPochhammer[q^3]; A261884[n_] := SeriesCoefficient[(A004016[q] - A004016[q^2] - 2*A004016[q^3] + 2*A004016[q^6])/6, {q, 0, n}]; Table[A261884[n], {n, 1, 50}] (* G. C. Greubel, Sep 24 2017 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, (-1)^e, p==3, -1, p%6==1, e+1, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^9 + A)^3 / eta(x^3 + A) - x * eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^18 + A)^4 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^9 + A)^2), n))};

Formula

Moebius transform is period 18 sequence [ 1, -2, -2, 2, -1, 4, 1, -2, 0, 2, -1, -4, 1, -2, 2, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = (-1)^e, a(3^e) = -1 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} F(x^(6*k - 5)) - F(x^(6*k - 3)) + F(x^(6*k - 1)) where F(x) := x / (1 + x + x^2).
a(n) = A093829(n) unless n == 0 (mod 3). a(2*n) = - a(n). a(3*n + 1) = A033687(n).
a(6*n + 1) = A097195(n). a(6*n + 3) = - A033762(n). a(6*n + 5) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(18*sqrt(3)) = 0.100766631346... . - Amiram Eldar, Nov 23 2023

A305185 a(n) minimizes the maximum norm of elements in a complete residue system of Eisenstein integers modulo n.

Original entry on oeis.org

0, 1, 3, 4, 7, 12, 13, 19, 27, 28, 37, 48, 49, 61, 75, 76, 91, 108, 109, 127, 147, 148, 169, 192, 193, 217, 243, 244, 271, 300, 301, 331, 363, 364, 397, 432, 433, 469, 507, 508, 547, 588, 589, 631, 675, 676, 721, 768, 769, 817, 867, 868, 919, 972, 973, 1027, 1083, 1084, 1141, 1200
Offset: 1

Views

Author

Jianing Song, May 27 2018

Keywords

Comments

From Jianing Song, May 05 2019: (Start)
For any Eisenstein integer w != 0, let R(w) be any set of N(w) Eisenstein integers such that no two numbers are congruent modulo w, then we intend to find the smallest possible value of max_{s in R(w)} N(s). Here N(w) is the norm of w.
If we can find a set of complex numbers A such that: (i) for any Eisenstein integer x, r in A, |r| <= |r - x|; (ii) every complex number z can be uniquely represented as z = x + r, where x is an Eisenstein integer, r is in A, then S(w) = {r*w : r is in A} is a complete residue system modulo w formed by choosing one element with the minimal norm in each residue class modulo w (there may be more than one element whose norms are minimal in one residue class). As a result, the smallest possible value of max_{s in R(w)} N(s) is max_{s in S(w)} N(s). For more details, see my further notes in the Link section.
Now, for positive integers n, we find the value of max_{s in S(n)} N(s) over the ring of Eisenstein integers. Let A be the set shown in Page 5, Figure 2 in my further notes on this sequence (see Links section below), and S(w) = {r*w : r in A}. For n >= 2, note that for any s in S(n), s != 0, there exists some s' in S(n) such that s/s' is an Eisenstein unit and arg(s') is in the range [-Pi/6, Pi/6]. Let s' = (x + y*sqrt(3)*i)/2 where x and y have the same parity, 0 < x <= n and -x/3 <= y <= x/3, then N(s) = N(s') = (x^2 + 3*y^2)/4. For fixed x >= 2, we have max |y| = x - 2*ceiling(x/3) so max N(s') = max_{x=2..n} (x^2 + 3*(x - 2*ceiling(x/3))^2)/4 = (n^2 + 3*(n - 2*ceiling(n/3))^2)/4. (End)

Examples

			In the following examples let w = (-1 + sqrt(-3))/2. Let A be the set shown in Page 5, Figure 2 in my further notes on this sequence, and S(w) = {r*w : r is in A}.
n = 1: S(1) = {0}, so a(1) = max_{s in S(1)} N(s) = 0.
n = 2: S(2) = {0, 1, w, w+1}, so a(2) = max_{s in S(2)} N(s) = 1.
n = 3: S(3) = {0, 1, -1, w, w+1, -w, -w-1, w+2, -w-2}, so a(3) = max_{s in S(3)} N(s) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n>1, n^2 - 3*n*ceil(n/3) + 3*ceil(n/3)^2, 0) \\ Jianing Song, May 12 2019

Formula

From Jianing Song, May 05 2019: (Start)
a(1) = 0; for n >= 2, a(n) = (n^2 + 3*(n - 2*ceiling(n/3))^2)/4 = n^2 - 3*n*ceiling(n/3) + 3*ceiling(n/3)^2.
For k >= 1, a(3*k-1) = 3*k^2 - 3*k + 1, a(3*k) = 3*k^2, a(3*k+1) = 3*k^2 + 1.
G.f.: (x^2*(1 + x^2)*(1 + 2*x - x^3 + x^4))/((1 - x)^3*(1 + x + x^2)^2). (End)

Extensions

Entry rewritten by Jianing Song, May 05 2019
Previous Showing 51-54 of 54 results.