cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A292704 Unitary abundant numbers k such that k+2 is also unitary abundant.

Original entry on oeis.org

1428, 20020, 49740, 63490, 107338, 137170, 142140, 195130, 218218, 315588, 340338, 380380, 382380, 497418, 514668, 555828, 578578, 580578, 602140, 626890, 672978, 711618, 740740, 786828, 795340, 811578, 860860, 862860, 885610, 897258, 904330, 907060, 940938
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2017

Keywords

Examples

			1428 is in the sequence since both 1428 and 1430 are unitary abundant: usigma(1428) = 2880 > 2*1428 and usigma(1430) = 3024 > 2*1430.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_]:=If[n==1, 1, Times @@ (1+Power @@@ FactorInteger[n])];
    uaQ[n_] := usigma[n] > 2 n; Select[Range@100000, uaQ[#] && uaQ[# + 2] &]

A298973 Squarefree primitive abundant numbers (first definition: having only deficient proper divisors).

Original entry on oeis.org

70, 1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830, 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 49742, 50505, 51765, 54285, 55965, 58695, 58786, 60214, 61215, 64155, 67298
Offset: 1

Views

Author

M. F. Hasler, Feb 16 2018

Keywords

Comments

Squarefree numbers (A005117) in A071395. The number of terms with n prime factors are counted in A295369. The subsequence of odd terms is A249263.
Two variants of the present sequence are possible: the terms listed by size, or as a table whose n-th row gives all those with n prime factors (so that A295369 would be the row lengths). They would differ only from a(322) = 692835 on, which is the first term with 6 prime factors, while a(755) = 4199030 is the last term with 5 prime factors.
A subsequence of the variant A249242, squarefree primitive abundant numbers using the 2nd definition, A091191, i.e., having no abundant proper divisors.
These numbers are also primitive unitary abundant numbers: unitary abundant numbers (A034683) that are also primitive abundant numbers (A071395). A unitary abundant number k is primitive if and only if usigma(k) - 2*k < 2*k/p^e, where p^e is the largest prime power dividing k and usigma is the sum of unitary divisors function (A034448). For numbers k in this sequence limsup_{k->oo} usigma(k)/k = 2. (Prasad and Reddy, 1990). - Amiram Eldar, Jul 18 2020

Examples

			The only squarefree primitive abundant number (SFPAN) with only 3 prime factors is a(1) = 2*5*7 = 70. Indeed, this number is abundant (sigma(70) - 70 = 1 + 2 + 5 + 7 + 10 + 14 + 35 = 74) but all of 2*5, 2*7 and 5*7 are deficient. This is also the smallest (thus primitive) weird number, see A002975.
The A295369(4) = 18 SFPAN with 4 prime factors range from a(2) = 2*5*11*13 = 1430 to a(19) = 2*5*11*53 = 5830.
The A295369(5) = 610 SFPAN with 5 prime factors range from a(20) = 3*5*7*11*13 = 15015 to a(755) = 2*5*11*59*647 = 4199030, but the first term with 6 prime factors occurs already at a(322) =  3*5*11*13*17*19 = 692835.
		

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, p. 115.

Crossrefs

Cf. A005117 (squarefree numbers), A071395 (primitive abundant numbers, first definition), A091191 (idem, second definition), A249242 (squarefree numbers in A091191).

Programs

  • Mathematica
    spaQ[n_] := SquareFreeQ[n] && DivisorSigma[1, n] > 2*n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2*# &]; Select[Range[70000], spaQ] (* Amiram Eldar, Jul 18 2020 *)
  • PARI
    is_A298973(n)=issquarefree(n)&&is_A071395(n)

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A129486 Odd unitary abundant numbers that are not odd, squarefree, ordinary abundant numbers.

Original entry on oeis.org

195195, 333795, 416955, 1786785, 1996995, 2417415, 2807805, 3138135, 3318315, 3708705, 3798795, 4103715, 4339335, 4489485, 4789785, 4967655, 5120115, 5420415, 5552085, 5660655, 5731635, 6051045, 6111105, 6263565, 6342105, 6695535, 6771765, 6938295, 7000455, 7088235
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

The first 50 members of A129485 and A112643 are the same. However, the sequences differ thereafter and this sequence contains those integers that are included in A129485 but are not included in A112643.

Examples

			The third integer which is an odd unitary abundant number but is not an ordinary, squarefree abundant number is 416955. Hence a(3)=416955.
		

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[ n_Integer?Positive ] := Select[ Divisors[ n ], GCD[ #, n/# ] == 1 & ]; sstar[ n_ ] := Plus @@ UnitaryDivisors[ n ] - n; UnitaryAbundantNumberQ[ k_ ] := If[ sstar[ k ] > k, True, False ]; data1 = Select[ Range[ 1, 10^7, 2 ], UnitaryAbundantNumberQ[ # ] & ]; data2 = Select[ Range[ 1, 10^7, 2 ], DivisorSigma[ 1, # ] - 2 # > 0 && ! MoebiusMu[ # ] == 0 & ]; Complement[ data1, data2 ]
    uaQ[n_] := Module[{f = FactorInteger[n]}, Max[f[[;;,2]]] > 1 && Times@@(1 + Power @@@ f) > 2n]; Select[Range[3, 2*10^6, 2], uaQ] (* Amiram Eldar, May 13 2019 *)

Formula

The complement of A129485 and A112643.

Extensions

More terms from Amiram Eldar, May 13 2019

A129499 Records for unitary abundant numbers, i.e., those integers which set a record for having a greater unitary abundance than any of their predecessors.

Original entry on oeis.org

30, 210, 330, 390, 510, 570, 690, 870, 930, 1110, 1230, 1290, 1410, 1470, 1590, 1770, 1830, 2010, 2130, 2190, 2310, 2730, 3570, 3990, 4830, 5610, 6090, 6510, 7590, 7770, 8610, 9030, 9870, 11130, 12390, 12810, 14070, 14910, 15330, 16590, 17430, 18690
Offset: 1

Views

Author

Ant King, Apr 20 2007

Keywords

Examples

			A129498 begins 12, 12, 12, 4, 12, 12, 12, 12, 12, 12, 12, 156, 12, 12. The second record value is 156, which occurs at position 12. As A034683(12)=210, it follows that a(2)=210.
		

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;RunningMaxima[l_]:=Rest[FoldList[Max,-Infinity,l]] HighWaterMarks[l_]:=Module[{s=Split[RunningMaxima[l]]}, {First/@s,Most[FoldList[Plus,1,Length/@s]]} ];data1=Select[Range[20000],sstar[ # ]-#>0 &];data2=sstar[ # ]-# &/@data1;pos=Last[HighWaterMarks[data2]];champs=data1[[ # ]] &/@pos

Formula

Values of A034683 corresponding to those positions in A129498 at which records occur.

A292705 Nonsquarefree unitary abundant numbers.

Original entry on oeis.org

150, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1380, 1386, 1428, 1470, 1530, 1596, 1638, 1650, 1710, 1734, 1740, 1860, 1890, 1950, 2058, 2070, 2142, 2166, 2220, 2394, 2460, 2550, 2580, 2610, 2790, 2820, 2850, 2940
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2017

Keywords

Comments

Most unitary abundant numbers are squarefree. For example, there are 70030 unitary abundant numbers below 10^6, and only 14685 are nonsquarefree.
The odd terms of this sequence are A129486.

Crossrefs

Programs

  • Mathematica
    usigma[n_]:=If[n==1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    aQ[n_]:=!SquareFreeQ[n] && usigma[n] > 2 n; Select[Range[10^4], aQ]

A342398 Numbers k such that there is a subset of the nontrivial unitary divisors of k, {d|k : 1 < d < k, gcd(d, k/d) = 1}, that adds up to k.

Original entry on oeis.org

30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 840, 858
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2021

Keywords

Examples

			30 is a term since its proper unitary divisors, 1 < d < 30, are {2, 3, 5, 6, 10, 15}, and 5 + 10 + 15 = 30.
		

Crossrefs

The unitary version of A136446.
Subsequence of A034683 and A293188.

Programs

  • Mathematica
    q[n_] := Module[{d = Most @ Select[Divisors[n], CoprimeQ[#, n/#] &], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] > 0]; Select[Range[1000], q]

A357685 Numbers k such that A293228(k) > k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 114, 132, 138, 140, 156, 174, 186, 204, 210, 222, 228, 246, 258, 276, 282, 318, 330, 348, 354, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564, 570, 582, 606, 618, 636, 642, 654, 660, 678, 690
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 79, 843, 8230, 83005, 826875, 8275895, 82790525, 827718858, 8276571394, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0827... .

Examples

			30 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15} and their sum is 42 > 30.
60 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15, 30} and their sum is 72 > 60.
		

Crossrefs

Disjoint union of A087248 and A357686.
Subsequence of A005101.

Programs

  • Mathematica
    s[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; Select[Range[2, 1000], s[#] > # &]
  • PARI
    is(n) = {my(f = factor(n), s); s = prod(i=1, #f~, f[i,1]+1); if(n==1 || vecmax(f[,2]) == 1, s -= n); s > n};

A129498 Unitary abundancy of n-th unitary abundant number: usigma(k)-2k if this is > 0.

Original entry on oeis.org

12, 12, 12, 4, 12, 12, 12, 12, 12, 12, 12, 156, 12, 12, 12, 12, 12, 12, 204, 12, 12, 228, 12, 120, 12, 12, 228, 12, 12, 276, 12, 252, 300, 12, 12, 12, 180, 12, 12, 120, 12, 348, 300, 12, 12, 12, 188, 120, 12, 324, 12, 12, 48, 300, 420, 12, 12, 196, 72, 444, 12, 372
Offset: 1

Views

Author

Ant King, Apr 20 2007

Keywords

Comments

The transforms of this sequence are discussed in A129499.

Examples

			The fourth unitary abundant number is 70. As the unitary divisors of 70 are 1, 2, 5, 7, 10, 14, 35 and 70, we have a(4) = 1+2+5+7+10+14+35+70-2 * 70 = 4.
		

Crossrefs

Programs

  • Mathematica
    uab[1]=-1; uab[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - 2n; seq={}; Do[u=uab[n]; If[u>0, AppendTo[seq, u]], {n, 1, 1000}]; seq (* Amiram Eldar, Jun 18 2019 *)

Formula

A034448(k)-2k = A034460(k)-k, whenever these are positive.
a(n) = A129468(A034683(n)). - Amiram Eldar, Jun 18 2019
Previous Showing 21-30 of 40 results. Next