cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 145 results. Next

A306008 Number of non-isomorphic intersecting set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 10, 21, 39, 78
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 7 set-systems:
{{1,2,3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

A334270 Number of sequences of length n that cover an initial interval of positive integers and are both a reversed Lyndon word and a co-Lyndon word.

Original entry on oeis.org

1, 1, 1, 3, 10, 42, 224, 1505, 12380, 120439
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2020

Keywords

Comments

Also the number of sequences of length n that cover an initial interval of positive integers and are both a Lyndon word and a reversed co-Lyndon word.
A Lyndon word is a finite sequence of positive integers that is lexicographically strictly less than all of its cyclic rotations. Co-Lyndon is defined similarly, except with strictly greater instead of strictly less.

Examples

			The a(1) = 1 through a(4) = 10 normal sequences:
  (1)  (2,1)  (2,1,1)  (2,1,1,1)
              (2,2,1)  (2,2,1,1)
              (3,2,1)  (2,2,2,1)
                       (3,1,2,1)
                       (3,2,1,1)
                       (3,2,2,1)
                       (3,2,3,1)
                       (3,3,2,1)
                       (4,2,3,1)
                       (4,3,2,1)
		

Crossrefs

These compositions are ranked by A334266 (standard) and A334267 (binary).
Compositions of this type are counted by A334269.
Necklace compositions of this type are counted by A334271.
Dominated by A334272 (the necklace version).
Normal sequences are counted by A000670.
Binary (or reversed binary) Lyndon words are counted by A001037.
Lyndon compositions are counted by A059966.
Normal Lyndon words are counted by A060223.
Normal sequences by length and Lyndon factorization length are A296372.
All of the following pertain to compositions in standard order (A066099):
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Length of Lyndon factorization is A329312.
- Length of co-Lyndon factorization is A334029.
- Length of Lyndon factorization of reverse is A334297.
- Length of co-Lyndon factorization of reverse is A329313.

Programs

  • Mathematica
    lynQ[q_]:=Length[q]==0||Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],lynQ[Reverse[#]]&&colynQ[#]&]],{n,0,6}]

A335468 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,2).

Original entry on oeis.org

22, 45, 46, 54, 76, 86, 90, 91, 93, 94, 109, 110, 118, 148, 150, 153, 156, 166, 173, 174, 178, 180, 181, 182, 183, 186, 187, 189, 190, 204, 214, 218, 219, 221, 222, 237, 238, 246, 278, 280, 297, 300, 301, 302, 306, 307, 308, 310, 313, 316, 326, 332, 333, 334
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence together with the corresponding compositions begins:
   22: (2,1,2)
   45: (2,1,2,1)
   46: (2,1,1,2)
   54: (1,2,1,2)
   76: (3,1,3)
   86: (2,2,1,2)
   90: (2,1,2,2)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
   94: (2,1,1,1,2)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  148: (3,2,3)
  150: (3,2,1,2)
		

Crossrefs

The complement A335469 is the avoiding version.
The (1,2,1)-matching version is A335466.
These compositions are counted by A335472.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134 and ranked by A334030.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,x_,_}/;x>y]&];

A335481 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,3).

Original entry on oeis.org

44, 88, 89, 92, 108, 152, 172, 176, 177, 178, 179, 180, 184, 185, 188, 216, 217, 220, 236, 296, 300, 304, 305, 312, 332, 344, 345, 348, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 368, 369, 370, 371, 372, 376, 377, 380, 408, 428, 432, 433, 434, 435
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   44: (2,1,3)
   88: (2,1,4)
   89: (2,1,3,1)
   92: (2,1,1,3)
  108: (1,2,1,3)
  152: (3,1,4)
  172: (2,2,1,3)
  176: (2,1,5)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
  180: (2,1,2,3)
  184: (2,1,1,4)
  185: (2,1,1,3,1)
  188: (2,1,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
    				

A335484 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,2,1).

Original entry on oeis.org

37, 69, 75, 77, 101, 133, 137, 139, 141, 149, 150, 151, 155, 157, 165, 197, 203, 205, 229, 261, 265, 267, 269, 274, 275, 277, 278, 279, 281, 283, 285, 293, 297, 299, 300, 301, 302, 303, 309, 310, 311, 315, 317, 325, 331, 333, 357, 389, 393, 395, 397, 405, 406
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   37: (3,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   77: (3,1,2,1)
  101: (1,3,2,1)
  133: (5,2,1)
  137: (4,3,1)
  139: (4,2,1,1)
  141: (4,1,2,1)
  149: (3,2,2,1)
  150: (3,2,1,2)
  151: (3,2,1,1,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  165: (2,3,2,1)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;z
    				

A335524 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335477 is the matching version.
The (1,2,2)-avoiding version is A335525.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335525 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,2,2).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335475 is the matching version.
The (2,2,1)-avoiding version is A335524.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.

Original entry on oeis.org

1, 1, 2, 8, 28, 108, 524, 2608, 14176, 86576, 550672, 3782496, 27843880, 214071392, 1751823600, 15041687664, 134843207240, 1269731540864, 12427331494304, 126619822952928, 1341762163389920, 14712726577081248, 167209881188545344, 1963715680476759040, 23794190474350155856
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Examples

			The a(4) = 28 multiset partitions:
  {1}{111}      {1}{112}      {1}{123}      {1}{234}
  {1}{1}{1}{1}  {1}{122}      {1}{223}      {2}{134}
                {1}{222}      {1}{233}      {3}{124}
                {2}{111}      {2}{113}      {4}{123}
                {2}{112}      {2}{123}      {1}{2}{3}{4}
                {2}{122}      {2}{133}
                {1}{1}{1}{2}  {3}{112}
                {1}{1}{2}{2}  {3}{122}
                {1}{2}{2}{2}  {3}{123}
                              {1}{1}{2}{3}
                              {1}{2}{2}{3}
                              {1}{2}{3}{3}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other conditions: A034691, A116540, A255906, A356937, A356942.
Other types: A050330, A356932, A356934, A356935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2023

A356945 Number of multiset partitions of the prime indices of n such that each block covers an initial interval. Number of factorizations of n into members of A055932.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a{n} multiset partitions for n = 8, 24, 72, 96:
  {{111}}      {{1112}}      {{11122}}      {{111112}}
  {{1}{11}}    {{1}{112}}    {{1}{1122}}    {{1}{11112}}
  {{1}{1}{1}}  {{11}{12}}    {{11}{122}}    {{11}{1112}}
               {{1}{1}{12}}  {{12}{112}}    {{111}{112}}
                             {{1}{1}{122}}  {{12}{1111}}
                             {{1}{12}{12}}  {{1}{1}{1112}}
                                            {{1}{11}{112}}
                                            {{11}{11}{12}}
                                            {{1}{12}{111}}
                                            {{1}{1}{1}{112}}
                                            {{1}{1}{11}{12}}
                                            {{1}{1}{1}{1}{12}}
		

Crossrefs

Positions of 0's are A080259, complement A055932.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Multisets covering an initial interval are counted by A000009, A000041, A011782, ranked by A055932.
Other types: A034691, A089259, A356954, A356955.
Other conditions: A050320, A050330, A322585, A356233, A356931, A356936.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nnQ[m_]:=PrimePi/@First/@FactorInteger[m]==Range[PrimePi[Max@@First/@FactorInteger[m]]];
    Table[Length[Select[facs[n],And@@nnQ/@#&]],{n,100}]

A356955 MM-numbers of multisets of multisets, each covering an initial interval. Products of primes indexed by elements of A055932.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 21, 24, 26, 27, 28, 32, 36, 37, 38, 39, 42, 48, 49, 52, 53, 54, 56, 57, 61, 63, 64, 72, 74, 76, 78, 81, 84, 89, 91, 96, 98, 104, 106, 108, 111, 112, 113, 114, 117, 122, 126, 128, 131, 133, 144, 147, 148, 151, 152
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

An initial interval is a set {1,2,...,n} for some n >= 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multisets of multisets:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  32: {{},{},{},{},{}}
		

Crossrefs

Multisets covering an initial interval are ctd by A011782, rkd by A055932.
This is the initial version of A356944.
Other types: A034691, A089259, A356945, A356954.
Other conditions: A302478, A302492, A356930, A356935, A356939, A356940.
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],And@@normQ/@primeMS/@primeMS[#]&]
Previous Showing 81-90 of 145 results. Next