cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A179911 Primes with three embedded primes.

Original entry on oeis.org

113, 131, 179, 197, 223, 233, 239, 257, 271, 283, 293, 311, 313, 337, 347, 353, 359, 367, 397, 431, 479, 547, 571, 593, 613, 617, 653, 719, 733, 739, 743, 773, 797, 823, 853, 937, 953, 971, 1013, 1031, 1097, 1103, 1117, 1129, 1151, 1163, 1213, 1217, 1229
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 3.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179911 n = a179911_list !! (n-1)
    a179911_list = map (a000040 . (+ 1)) $ elemIndices 3 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 210, f@# == 4 &]

A179912 Primes with four embedded primes.

Original entry on oeis.org

137, 173, 317, 373, 379, 523, 673, 1123, 1153, 1171, 1193, 1223, 1231, 1277, 1279, 1283, 1297, 1307, 1327, 1531, 1579, 1597, 1613, 1637, 1759, 1783, 1823, 1913, 1931, 2053, 2153, 2333, 2339, 2341, 2351, 2393, 2399, 2411, 2467, 2503, 2539, 2543, 2557
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 4.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179912 n = a179912_list !! (n-1)
    a179912_list = map (a000040 . (+ 1)) $ elemIndices 4 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 380, f@# == 5 &]

A179913 Primes with five embedded primes.

Original entry on oeis.org

1237, 1319, 1367, 1523, 1571, 1723, 1753, 1979, 1997, 2131, 2179, 2239, 2273, 2293, 2297, 2357, 2377, 2383, 2389, 2417, 2437, 2473, 2531, 2579, 2593, 2617, 2711, 2731, 2753, 2797, 3119, 3167, 3257, 3271, 3313, 3371, 3547, 3571, 3593, 3617, 3671, 3677
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 5.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179913 n = a179913_list !! (n-1)
    a179913_list = map (a000040 . (+ 1)) $ elemIndices 5 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 510, f@# == 6 &]

A179914 Primes with six embedded primes.

Original entry on oeis.org

1733, 1973, 2113, 2137, 2237, 2311, 2347, 2371, 2713, 2719, 2837, 2953, 2971, 3373, 3673, 3719, 3733, 3739, 4337, 4373, 4397, 4673, 5231, 5233, 5347, 5479, 6131, 6197, 6317, 6733, 6737, 7193, 7331, 7523, 8237, 8317, 8537, 9719, 10313, 10337, 10937
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 6.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179914 n = a179914_list !! (n-1)
    a179914_list = map (a000040 . (+ 1)) $ elemIndices 6 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1330, f@# == 7 &]

A179915 Primes with seven embedded primes.

Original entry on oeis.org

1373, 3137, 3797, 5237, 6173, 11173, 11311, 11353, 11719, 11731, 11971, 12113, 12239, 12347, 12377, 12953, 12973, 13127, 13177, 13217, 13537, 13597, 13679, 13709, 13711, 13723, 13729, 13751, 13757, 13759, 13799, 13967, 13997, 15137
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 7.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179915 n = a179915_list !! (n-1)
    a179915_list = map (a000040 . (+ 1)) $ elemIndices 7 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1770, f@# == 8 &]

A179916 Primes with eight embedded primes.

Original entry on oeis.org

12373, 12379, 12713, 13171, 15233, 17333, 17359, 17971, 19373, 19379, 21139, 21319, 22973, 23167, 23197, 23311, 23473, 23537, 23593, 23671, 23677, 23761, 23773, 23977, 24113, 24137, 24179, 24197, 24317, 24337, 24379, 24733, 25237
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 8.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179916 n = a179916_list !! (n-1)
    a179916_list = map (a000040 . (+ 1)) $ elemIndices 8 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 2790, f@# == 9 &]

A179917 Primes with nine embedded primes.

Original entry on oeis.org

11317, 19739, 19973, 21317, 21379, 22397, 22937, 23117, 23173, 23371, 23971, 24373, 26317, 27197, 29173, 29537, 32719, 33739, 33797, 37397, 39719, 51137, 51973, 52313, 53173, 53479, 53719, 57173, 57193, 61379, 61979, 63179, 66173
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 9.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179917 n = a179917_list !! (n-1)
    a179917_list = map (a000040 . (+ 1)) $ elemIndices 9 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 6610, f@# == 10 &]

A179918 Primes with ten embedded primes.

Original entry on oeis.org

23719, 31379, 52379, 111373, 111731, 111733, 112397, 113117, 113167, 113723, 113759, 113761, 115237, 117191, 117431, 121139, 122971, 123113, 123373, 123479, 123731, 124337, 126173, 126317, 127139, 127733, 127739, 127973, 129733, 131171
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 10.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179918 n = a179918_list !! (n-1)
    a179918_list = map (a000040 . (+ 1)) $ elemIndices 10 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 12280, f@# == 11 &]

A220488 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Feb 01 2013

Keywords

Comments

For similar sequences see A152426 and A152427.

Crossrefs

Programs

A342961 Primes p such that p + the sum of its prime digits is prime.

Original entry on oeis.org

11, 19, 29, 37, 41, 53, 61, 73, 89, 101, 109, 149, 181, 191, 199, 229, 233, 257, 269, 277, 281, 307, 331, 359, 379, 383, 401, 409, 419, 433, 449, 461, 491, 499, 563, 587, 593, 601, 619, 641, 653, 661, 673, 677, 691, 727, 797, 809, 811, 821, 881, 911, 919, 937, 941, 977, 991, 1009, 1019, 1033
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 31 2021

Keywords

Examples

			a(3) = 29 is a term because it is prime, the sum of its prime digits is 2, and 29+2 = 31 is also prime.
		

Crossrefs

Includes A034844. Cf. A085563, A342962.

Programs

  • Maple
    f:= p -> p + convert(select(isprime,convert(p,base,10)),`+`):
    select(t -> isprime(t) and isprime(f(t)), [seq(i,i=3..2000,2)]);
  • Mathematica
    Select[Prime@Range@200,PrimeQ@Total[Join[{#},Select[IntegerDigits@#,PrimeQ]]]&] (* Giorgos Kalogeropoulos, Apr 01 2021 *)
  • PARI
    isok(p) = isprime(p) && isprime(p+sumdigits(p)); \\ Michel Marcus, Apr 01 2021
Previous Showing 21-30 of 41 results. Next