A274721 a(n) is the least k such that A051903(k^2+1) = n.
1, 7, 57, 182, 2057, 1068, 32318, 110443, 280182, 3626068, 23157318, 120813568, 123327057, 1097376068, 11109655182, 49925501068, 407838170807, 355101282318, 3459595983307, 15613890344818, 365855836217682, 110981321985443, 2273204469030182, 9647724486047943
Offset: 1
Keywords
Examples
1^2 + 1 = 2. 7^2 + 1 = 2*5^2. 57^2 + 1 = 2*5^3*13. 182^2 + 1 = 5^4 * 53.
Links
- Robert Israel, Table of n, a(n) for n = 1..109
Programs
-
Maple
F:= proc(n) local v, p,w; v:= numtheory:-msqrt(-1,5^n); v:= min(v, 5^n-v); if max(seq(t[2],t=ifactors(v^2+1)[2])) > n then v:= 5^n - v; if max(seq(t[2],t=ifactors(v^2+1)[2])) > n then error "neither %d nor %d works",5^n-v,v fi fi; for p from 13 by 4 while p^n <= v^2+1 do if isprime(p) then w:= numtheory:-msqrt(-1,p^n); w:= min(w, p^n-w); if w < v then if max(seq(t[2],t=ifactors(w^2+1)[2])) = n then v:= w; fi fi fi od; v end proc: F(1):= 1: map(F, [$1..100]);
Comments