cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A059575 The array described in A059513 read by antidiagonals in the direction of construction.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 13, 19, 23, 1, 48, 87, 107, 116, 1, 243, 458, 635, 708, 736, 1, 1517, 2967, 4239, 5163, 5533, 5659, 1, 11562, 22824, 33291, 41772, 47733, 50031, 50796, 1, 103125, 204598, 301161, 385422, 452016, 497789, 515254, 521040
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Crossrefs

Extensions

Sequence contained two errors corrected by N. J. A. Sloane, Jun 14 2005

A334017 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only up, right, and diagonal up-left moves.

Original entry on oeis.org

1, 1, 2, 2, 5, 10, 4, 13, 33, 63, 8, 32, 98, 240, 454, 16, 76, 269, 777, 1871, 3539, 32, 176, 702, 2295, 6420, 15314, 29008, 64, 400, 1768, 6393, 19970, 54758, 129825, 246255, 128, 896, 4336, 17088, 58342, 176971, 478662, 1129967, 2145722, 256, 1984, 10416
Offset: 1

Views

Author

Peter Kagey, Apr 12 2020

Keywords

Comments

First row is A175962.

Examples

			Table begins:
n\k|  1   2     3      4       5        6         7          8
---+----------------------------------------------------------
  1|  1   2    10     63     454     3539     29008     246255
  2|  1   5    33    240    1871    15314    129825    1129967
  3|  2  13    98    777    6420    54758    478662    4266102
  4|  4  32   269   2295   19970   176971   1593093   14532881
  5|  8  76   702   6393   58342   536080   4965056   46345046
  6| 16 176  1768  17088  163041  1550809  14765863  140982374
  7| 32 400  4336  44280  440602  4332221  42373370  413689403
  8| 64 896 10416 111984 1159580 11771312 118190333 1179448443
For example, the T(2,2) = 5 sequences of permissible queen's moves from (1,1) to (2,2) are:
(1,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
		

Crossrefs

Cf. A175962.
Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-left), A334016 (right, up-right, up-left).
A033877 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves.

A059578 Variation of Boustrophedon transform applied to 1,1,1,1,... Fill an array by diagonals, all in the 'up' direction. The first column is 1,1,1,1,.... For the next element of a diagonal, add to the previous element the elements of the row and the column the new element is in. The first row gives a(n).

Original entry on oeis.org

1, 2, 7, 30, 147, 792, 4559, 27500, 171645, 1099388, 7185101, 47724494, 321225165, 2186177302, 15018795171, 104011496474, 725373340023, 5089785834004, 35907469451787, 254541483884544, 1812185157383017, 12951828431246472, 92893383046741073, 668383820775639066
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Examples

			The array begins
1 2 7 30 ...
1 4 20 ...
1 8 ...
1 ...
		

Crossrefs

Extensions

More terms from Sean A. Irvine, Sep 29 2022

A347147 Square array read by antidiagonals: T(n,k) is the number of rook paths from (1,1) to (n,k) if the rook may travel 1 to i squares along rank or file i, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 10, 7, 1, 1, 12, 23, 23, 12, 1, 1, 20, 50, 62, 50, 20, 1, 1, 33, 104, 156, 156, 104, 33, 1, 1, 54, 211, 373, 438, 373, 211, 54, 1, 1, 88, 420, 859, 1155, 1155, 859, 420, 88, 1, 1, 143, 824, 1925, 2915, 3306, 2915, 1925, 824, 143, 1
Offset: 1

Views

Author

Glen Whitney, Aug 20 2021

Keywords

Comments

Note that all of the rook moves are in the positive horizontal or vertical direction.
By symmetry, the array is equal to its transpose.
From the definition, T(1,1) = 1 and T(n,k) = Sum_{i=n-k..n-1} T(i,k) + Sum_{j=k-n..k-1} T(n,j) if we take T(n,k)=0 for n<=0 or k<=0.

Examples

			There are four rook paths with move length capped by the number of the rank or file it is moving along, from (1,1) to (3,2):
    (1,1)->(2,1)->(3,1)->(3,2);
    (1,1)->(2,1)->(2,2)->(3,2);
    (1,1)->(1,2)->(2,2)->(3,2);
    (1,1)->(1,2)->(3,2).
  So T(3,2) = 4.
An initial portion of the full array:
    n=  1  2   3   4    5    6    7     8     9 ...
       -----------------------------------------
  k=1:  1  1   1   1    1    1    1     1     1 ...
  k=2:  1  2   4   7   12   20   33    54    88 ...
  k=3:  1  4  10  23   50  104  211   420   824 ...
  k=4:  1  7  23  62  156  373  859  1925  4226 ...
  k=5:  1 12  50 156  438 1155 2915  7114 16917 ...
  k=6:  1 20 104 373 1155 3306 8978 23450 59422 ...
  ....
		

Crossrefs

Cf. A000071 (row n=2, and column k=2).
Cf. A035002 (unlimited rook moves).
A347148 gives a similar array that includes the 0 file and rank.

Programs

  • Python
    n = 1; k = 1;
    T = [[],[0]] # Dummy 0th entry, and dummy [1][0]th entry.
    T[n].append(1)  # set T[1][1] to 1
    print(f"T(1,1) = {T[n][k]}")
    for m in range(64):
       if n == 1:
           n = k + 1; k = 1;
           T.append([0]); # initialize T[n], with dummy 0th entry.
       else:
           n -= 1; k += 1;
       T[n].append(sum(T[i][k] for i in range(max(1,n-k),n))
                   + sum(T[n][j] for j in range(max(1,k-n),k)))
       print(f"T({n},{k}) = {T[n][k]}")

Formula

T(n,k) = 2*(T(n-1,k)+T(n,k-1))-3T(n-1,k-1)-T(n,k-n-1)+T(n-1,k-n), for 1
T(n,n) = 2*(T(n-1,n)+T(n,n-1))-3T(n-1,n-1) = 4T(n-1,n)-3T(n-1,n-1), for n>1.
Previous Showing 11-14 of 14 results.