cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A035086 Number of increasing rooted polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 19, 135, 1204, 12537, 150556, 2043930, 30969211, 517973148, 9478800604, 188381470095, 4040440921699, 93020386382742, 2287969523647171, 59877222907995675, 1661259526266784171, 48705364034046758493, 1504614657169716311674, 48848750173492332588525
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Nodes are numbered and the numbers increase as you move away from the root to any point on the same polygon.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301 and Chapter 5.
  • F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=1 then x else convert(series(Int(exp(A(n-1)^2/ (2-2*A(n-1))), x), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    max = 22; sy = Series[Integrate[E^(-(y^2/(2-2*y))), y], {y, 0, max}]; sx = Normal[ InverseSeries[sy, x]]; a[n_] := Coefficient[sx, x, n]*n!; Table[a[n], {n, 1, max }] (* Jean-François Alcover, Feb 24 2015 *)

Formula

E.g.f. satisfies A'(x) = exp(A(x)^2/(2-2*A(x))).

A035087 Number of labeled rooted polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

1, 0, 3, 12, 135, 1440, 20895, 342720, 6585705, 142430400, 3449279295, 92207808000, 2699909867655, 85900402748160, 2951318065570875, 108894519775641600, 4294542443185019025, 180277244225580902400, 8025792422657714379675, 377695544010698833920000
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301.
  • Harary and E. M. Palmer, Graphical Enumeration, p. 71
  • F. Harary and R. Z. Norman "The Dissimilarity Characteristic of Husimi Trees" Annals of Mathematics, 58 1953, pp. 134-141
  • F. Harary and G. E. Uhlenbeck "On the Number of Husimi Trees" Proc. Nat. Acad. Sci. USA vol. 39 pp. 315-322 1953

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=1 then x else convert(series(x* exp(A(n-1)^2/ (2-2*A(n-1))), x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[E^(x^2/(2*(x-1)))*x,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)

Formula

E.g.f. satisfies A(x)=x*exp(A(x)^2/(2-2*A(x))).
a(n) ~ (1-s)^2 * sqrt(2/(6-11*s+4*s^2)) * n^(n-1) / (s * exp(1 - s^2/(2*(1-s))))^n, where s = 0.5391888728108891165... is the root of the equation 2-4*s+s^3=0. - Vaclav Kotesovec, Jan 08 2014

A035350 "BIK" (reversible, indistinct, unlabeled) transform of A000237.

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 164, 583, 2142, 8062, 30950, 120651, 476418, 1901311, 7656763, 31074151, 126963466, 521820340, 2155911512, 8948711597, 37299355151, 156054201936, 655134261795, 2758885471920, 11651193009013
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035351 Number of labeled rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 2, 12, 124, 1810, 34056, 783874, 21331136, 669902076, 23845794400, 948733833256, 41721533664768, 2009539243299328, 105209055401980544, 5948937678563109000, 361296961279074942976, 23456120142707873968336, 1621073894248128387746304
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then x else x* exp((2*A(n-1) -A(n-1)^2)/ (2-2*A(n-1))) fi end: a:= n-> coeff(series(A(n-1), x=0,n+1), x,n)*n!: seq(a(n), n=1..20); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/E^(((x-2)*x)/(2*(x-1))),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)

Formula

E.g.f. satisfies A(x) = x*exp((2*A(x)-A(x)^2)/(2-2*A(x))).
a(n) ~ (1-s)^2 * sqrt(2/((2-s)*(1+s-s^2))) * n^(n-1) / (s * exp((2+(s-4)*s)/(2-2*s)))^n, where s = 1/3*(4-2/(-17+3*sqrt(33))^(1/3) + (-17+3*sqrt(33))^(1/3)) = 0.456310987307923638429144... is the root of the equation 6*s - 4*s^2 + s^3 = 2. - Vaclav Kotesovec, Jan 08 2014

Extensions

More terms from Alois P. Heinz, Aug 20 2008

A035352 Number of increasing rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 1, 3, 16, 122, 1203, 14518, 207061, 3406083, 63465271, 1320938774, 30371545338, 764447981599, 20904838435264, 617151430504113, 19561785238965715, 662583041367287249, 23882958184429006800, 912777131398463190802, 36868849734952579404745
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Limit n->infinity (a(n)/n!)^(1/n) = 2.168573... - Vaclav Kotesovec, Feb 28 2014

Crossrefs

Programs

  • Maple
    Ap:= proc(n) option remember; local A, f; if n<=0 then f:=1 else A:= Int(Ap(n-1),x); f:= exp((2*A -A^2)/ (2-2*A)) fi; convert(series(f, x, n+1), polynom) end: a:= n-> coeff(series(Ap(n-1), x=0,n), x,n-1)*(n-1)!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Ap[n_] := Ap[n] = Module[{A, f}, If[n <= 0, f=1, A = Integrate[Ap[n-1], x]; f = Exp[(2*A-A^2)/(2-2*A)]]; Series[f, {x, 0, n+1}] // Normal]; a[n_] := SeriesCoefficient[Ap[n-1], {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

E.g.f. satisfies A'(x) = exp((2*A(x)-A(x)^2)/(2-2*A(x))).

Extensions

a(18) corrected by Alois P. Heinz, Aug 20 2008

A035354 "DHK" (bracelet, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 103, 330, 1077, 3556, 11895, 40187, 137049, 471070, 1630819, 5680854, 19899698, 70053093, 247711242, 879441789, 3133648932, 11202930544, 40172365842, 144453506494, 520759972064, 1881787195944, 6814766134276
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035355 "BHK" (reversible, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 44, 140, 442, 1443, 4751, 15903, 53716, 183334, 630513, 2184417, 7614318, 26690344, 94015908, 332639104, 1181596784, 4212424485, 15066677338, 54050993664, 194438337125, 701224890628, 2534810109024
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035356 Number of asymmetric polygonal cacti with bridges (mixed Husimi trees).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 13, 45, 143, 461, 1470, 4747, 15364, 50283, 165549, 549734, 1837539, 6184589, 20938983, 71297174, 244009225, 839101403, 2898145437, 10050549437, 34985611467, 122209803101, 428285696895, 1505491979826
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Formula

G.f.: A(x) = B(x) + C(x) - B(x)*D(x), where B, C, D respectively are g.f.s of A035353, A035354, A035355.
Previous Showing 11-18 of 18 results.