cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A035188 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 2, 1, 3, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 1, 1, 3, 0, 0, 2, 1, 0, 0, 2, 2, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 2, 1, 2, 0, 3, 2, 0, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 24. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[6, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=6); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(6, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(6, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(5+2*sqrt(6)) / sqrt(6) = 0.935881... . (End)
Multiplicative with a(p^e) = 1 if Kronecker(6, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(6, p) = -1 (p is in A038877), and a(p^e) = e+1 if Kronecker(6, p) = 1 (p is in A097934). - Amiram Eldar, Nov 20 2023

A035195 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 13.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 4, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 13. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[13, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=13); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(13, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((3+sqrt(13))/2)/sqrt(13) = 0.662735... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(13, d).
Multiplicative with a(13^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(13, p) = -1 (p is in A038884), and a(p^e) = e+1 if Kronecker(13, p) = 1 (p is in A038883 \ {13}). (End)

A035199 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 17.

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 5, 1, 2, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 3, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 2, 0, 6, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 7, 0, 0, 2, 3, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 17. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[17, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=17); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(17, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4+sqrt(17))/sqrt(17) = 1.016084... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(17, d).
Multiplicative with a(17^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(17, p) = -1 (p is in A038890), and a(p^e) = e+1 if Kronecker(17, p) = 1 (p is in A038889 \ {17}). (End)

A035192 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 10.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 0, 2, 2, 0, 2, 1, 0, 3, 0, 1, 0, 0, 0, 2, 1, 2, 4, 0, 0, 2, 2, 1, 0, 0, 0, 3, 2, 0, 4, 1, 2, 0, 2, 0, 3, 0, 0, 2, 1, 1, 0, 2, 2, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 2, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 4, 2, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 40. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[10, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=10); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(10, d)); \\ Amiram Eldar, Nov 18 2023

Formula

From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(10, d).
Multiplicative with a(p^e) = 1 if Kronecker(10, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(10, p) = -1 (p is in A038880), and a(p^e) = e+1 if Kronecker(10, p) = 1 (p is in A097955).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(10)+3)/sqrt(10) = 1.1500865228... . (End)

A035194 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 12.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 12. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[12, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=12); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(12, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2+sqrt(3))/sqrt(3) = 0.760345... (A196530). - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(12, d).
Multiplicative with a(p^e) = 1 if Kronecker(12, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(12, p) = -1 (p is in A003630), and a(p^e) = e+1 if Kronecker(12, p) = 1 (p is in A097933). (End)

A035210 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 28.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 0, 3, 2, 0, 2, 0, 0, 2, 1, 0, 4, 1, 2, 0, 2, 1, 0, 0, 0, 3, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 2, 4, 0, 1, 4, 2, 2, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 2, 2, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 28. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[28, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 28); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(28, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(28, d).
Multiplicative with a(p^e) = 1 if Kronecker(28, p) = 0 (p = 2 or 7), a(p^e) = (1+(-1)^e)/2 if Kronecker(28, p) = -1 (p is in A003632), and a(p^e) = e+1 if Kronecker(28, p) = 1 (p is in A296934).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(3*sqrt(7)+8)/sqrt(7) = 1.046454884756... . (End)

A035211 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 1, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 29. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[29, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 29); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(29, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(29, d).
Multiplicative with a(29^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(29, p) = -1 (p is in A038902), and a(p^e) = e+1 if Kronecker(29, p) = 1 (p is in A191022).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((sqrt(29)+5)/2)/sqrt(29) = 0.611766289562... . (End)

A035219 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 37. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[37, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 37); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(37, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(37, d).
Multiplicative with a(37^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(37, p) = -1 (p is in A038914), and a(p^e) = e+1 if Kronecker(37, p) = 1 (p is in A191027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(37)+6)/sqrt(37) = 0.819292168725... . (End)

A035215 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 33); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)

A322829 a(n) = Jacobi (or Kronecker) symbol (n/21).

Original entry on oeis.org

0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 21: repeat [0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1].
Also a(n) = Kronecker symbol (21/n).
This sequence is one of the three non-principal real Dirichlet characters modulo 21. The other two are Jacobi or Kronecker symbols {(n/63)} (or {(-63/n)}) and {(n/147)} (or {(-147/n)}).

Crossrefs

Cf. A035203 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017(d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), this sequence (d=21), A322796 (d=24).

Programs

  • Mathematica
    JacobiSymbol[Range[0, 100], 21] (* Paolo Xausa, Mar 19 2025 *)
  • PARI
    a(n) = kronecker(n, 21)

Formula

a(n) = 1 for n == 1, 4, 5, 16, 17, 20 (mod 21); -1 for n == 2, 8, 10, 11, 13, 19 (mod 21); 0 for n that are not coprime with 21.
Completely multiplicative with a(p) = a(p mod 21) for primes p.
a(n) = A102283(n)*A175629(n).
a(n) = a(n+21) = -a(n) for all n in Z.
From Chai Wah Wu, Feb 18 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-8) - a(n-9) + a(n-11) - a(n-12) for n > 11.
G.f.: -x*(x - 1)*(x + 1)*(x^8 - 2*x^7 + 2*x^6 + 2*x^2 - 2*x + 1)/(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1). (End)
Previous Showing 11-20 of 24 results. Next