cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A301504 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-3)).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 2, 0, 2, 5, 4, 1, 2, 7, 7, 2, 3, 10, 11, 4, 4, 14, 17, 8, 6, 19, 25, 13, 8, 25, 36, 21, 12, 33, 50, 33, 18, 43, 69, 49, 26, 56, 93, 71, 38, 72, 124, 102, 55, 92, 163, 142, 79, 118, 212, 195, 112, 151, 273, 265, 157, 193, 350, 354, 217, 246, 444
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 1 mod 4.

Examples

			a(9) = 3 because we have [9], [8, 1] and [5, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[x^3 QPochhammer[-1, x^4] QPochhammer[-x^(-3), x^4]/(2 (1 + x) (1 - x + x^2)), {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042948(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A117957 Number of partitions of n into parts larger than 1 and congruent to 1 mod 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 2, 4, 4, 3, 3, 5, 6, 5, 4, 6, 8, 7, 6, 8, 10, 10, 9, 10, 13, 13, 12, 14, 17, 18, 16, 18, 22, 23, 22, 23, 28, 31, 29, 30, 36, 39, 39, 39, 45, 51, 50, 51, 57, 64, 65, 65, 73, 81, 83, 84, 91, 102, 106, 106
Offset: 0

Views

Author

Emeric Deutsch, Apr 05 2006

Keywords

Comments

Also number of partitions of n such that 2k and 2k+1 occur with the same multiplicities. Example: a(26)=3 because we have [11,10,3,2], [9,8,5,4] and [7,7,6,6]. It is easy to find a bijection between these partitions and those described in the definition.

Examples

			a(26)=3 because we have [21,5],[17,9] and [13,13].
		

Crossrefs

Programs

  • Maple
    g:=1/product(1-x^(4*i+1),i=1..50): gser:=series(g,x=0,93): seq(coeff(gser,x,n),n=0..88);
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(4*k+1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: 1/product(1-x^(4i+1), i=1..infinity).
a(n) ~ exp(sqrt(n/6)*Pi) * Pi^(1/4) * Gamma(1/4) / (2^(31/8) * 3^(5/8) * n^(9/8)). - Vaclav Kotesovec, Mar 07 2016

A261629 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 22, 30, 38, 46, 56, 70, 88, 106, 126, 153, 186, 224, 264, 312, 372, 440, 516, 603, 708, 830, 964, 1117, 1296, 1503, 1734, 1992, 2292, 2638, 3024, 3453, 3942, 4504, 5134, 5831, 6616, 7511, 8518, 9631, 10872, 12274, 13848, 15592
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^(4*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(1/4)^2 / (8 * Pi^(3/2) * sqrt(n)).

A261632 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^3.

Original entry on oeis.org

1, 3, 6, 10, 15, 24, 37, 54, 75, 103, 144, 198, 265, 348, 456, 599, 777, 993, 1262, 1602, 2028, 2543, 3165, 3930, 4868, 6003, 7359, 8991, 10965, 13329, 16138, 19473, 23448, 28171, 33738, 40293, 48025, 57132, 67803, 80267, 94845, 111888, 131736, 154779, 181530
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(4*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/2)) * 2^(3/8) * Gamma(1/4)^3 / (16 * Pi^(9/4) * n^(3/8)).

A261636 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^4.

Original entry on oeis.org

1, 4, 10, 20, 35, 60, 100, 160, 245, 364, 536, 780, 1115, 1564, 2166, 2980, 4065, 5484, 7326, 9720, 12830, 16824, 21902, 28344, 36510, 46820, 59736, 75844, 95910, 120844, 151688, 189668, 236330, 293564, 363542, 448804, 552425, 678144, 830338, 1014052, 1235296
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} 1/(1 - x^(a*k+b))^j, then a(n) ~ Gamma(b/a)^j * 2^(-(j+5)/4 - j*b/(2*a)) * 3^((j-1)/4 - j*b/(2*a)) * j^(-(j-1)/4 + j*b/(2*a)) * a^(-(j+1)/4 + j*b/(2*a)) * Pi^(-j + j*b/a) * n^((j-3)/4 - j*b/(2*a)) * exp(Pi*sqrt(2*j*n/(3*a))).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(4*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(1/4) * Gamma(1/4)^4 / (32 * Pi^3 * n^(1/4)).

A309240 Expansion of 1/((1 - x)*(1 - x^2)*(1 + x^3)*(1 + x^4)*(1 - x^5)*(1 - x^6)*(1 + x^7)*(1 + x^8)*...).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 4, 4, 7, 5, 7, 6, 11, 9, 13, 10, 17, 14, 20, 15, 25, 22, 32, 24, 36, 31, 48, 38, 55, 45, 68, 55, 79, 65, 97, 79, 112, 91, 136, 113, 159, 128, 186, 156, 221, 179, 256, 213, 301, 245, 347, 290, 409, 334, 466, 388, 547, 451, 624, 517, 724, 600, 828, 687, 955, 793, 1088
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/(1 + (-1)^(k (k + 1)/2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k - 2))/((1 + x^(4 k - 1)) (1 - x^(4 k - 3))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[2/(QPochhammer[-1, -x^2] QPochhammer[x, -x^2]), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 + (-1)^(k*(k+1)/2) * x^k).
G.f.: Product_{k>=1} (1 + x^(4*k-2)) / ((1 + x^(4*k-1)) * (1 - x^(4*k-3))).
a(n) ~ Gamma(1/4) * exp(Pi*sqrt(n/6)) / (4 * 6^(1/8) * Pi^(3/4) * n^(5/8)). - Vaclav Kotesovec, Jul 17 2019
Previous Showing 11-16 of 16 results.