cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A344320 Number of partitions of n into consecutive parts not divisible by 5.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 3, 1, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2, 3, 1, 3, 3, 2, 1, 3, 1, 3, 1, 4, 2, 1, 3, 3, 1, 4, 2, 2, 1, 3, 2, 2, 4, 1, 3, 3, 1, 2, 4, 3, 1, 2, 3, 1, 2, 4, 2, 4, 2, 3, 2, 1, 3, 2, 1, 4, 4, 2, 1, 3, 2, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Examples

			a(13) = 3 because we have [13], [7, 6] and [6, 4, 3].
		

Crossrefs

A091607 Column 4 of triangle A091602.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 5, 6, 10, 12, 18, 22, 32, 39, 54, 67, 89, 110, 144, 177, 228, 280, 354, 433, 542, 659, 816, 989, 1214, 1464, 1784, 2142, 2593, 3101, 3730, 4444, 5318, 6310, 7514, 8886, 10534, 12413, 14656, 17214, 20249, 23711, 27790, 32447, 37908, 44134
Offset: 4

Views

Author

Christian G. Bower, Jan 23 2004

Keywords

Formula

a(n) = A035959(n) - A001935(n).

A124094 Table T(n,m) giving number of partitions of n such that all parts are coprime to m. Read along antidiagonals (increasing n, decreasing m).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 5, 1, 1, 1, 2, 2, 7, 1, 1, 2, 2, 4, 3, 11, 1, 1, 1, 3, 2, 5, 4, 15, 1, 1, 2, 1, 5, 3, 7, 5, 22, 1, 1, 1, 3, 1, 6, 4, 9, 6, 30, 1, 1, 2, 2, 5, 2, 10, 5, 13, 8, 42, 1, 1, 1, 2, 2, 7, 2, 13, 6, 16, 10, 56, 1, 1, 2, 2, 4, 3, 11, 3, 19, 8, 22, 12, 77, 1, 1, 1, 3, 2, 5, 4
Offset: 0

Views

Author

R. J. Mathar, Nov 26 2006

Keywords

Examples

			Upper left corner of table starts with row m=1 and column n=0:
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,6,10,13,19,25,34,44,60, 76,100,127,164,205,262,325,409,505, 628, 769,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,14,21,28,39,51,70, 90,119,153,199,252,324,406,515,642, 804, 994,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
1,1,2,3,5,7,11,15,22,30,42,55,76, 99,132,171,224,286,370,468,597,750, 945,1177,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,100,134,174,228,292,378,479,612,770, 972,1213,
1,1,1,2,2,3, 4, 4, 5, 7, 8,10,12, 14, 17, 21, 24, 28, 34, 39, 46, 53,  61,  71,
1,1,2,2,4,4, 6, 7,11,12,16,19,25, 29, 37, 44, 56, 65, 80, 94,114,133, 160, 187,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,296,384,488,624,787, 995,1244,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,489,626,790, 999,1250,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
		

Crossrefs

Row m=1 is A000041. Rows m=2, 4, 8, ... (where m is a power of 2) are A000009. Rows m=3, 9, ... (where m is a power of 3) are A000726. Row m=5 is A035959. Row=7 is A035985. Row m=10 is A096938.

Programs

  • Maple
    b:= proc(n, i, m) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-1, m) +`if`(igcd(m, i)=1, b(n-i, i, m), 0)
          fi
        end:
    T:= (n, m)-> b(n, n, m):
    seq (seq (T(n, 1+d-n), n=0..d), d=0..13);  # Alois P. Heinz, Sep 28 2011
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = Which[n < 0, 0, n == 0, 1, i < 1, 0, True, b[n, i-1, m] + If[GCD[m, i] == 1, b[n-i, i, m], 0]]; t[n_, m_] := b[n, n, m]; Table[Table[t[n, 1+d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    sigmastar(n,m)= { local(d,res=0) ; d=divisors(n) ; for(i=1,matsize(d)[2], if( gcd(d[i],m)==1, res += d[i] ; ) ; ) ; return(res) ; } f(n,m)= { local(qvec=vector(n+1,i,gcd(1,m))) ; for(i=1,n, qvec[i+1]=sum(k=1,i,sigmastar(k,m)*qvec[i-k+1])/i ; ) ; return(qvec[n+1]) ; } { for(d=1,18, for(c=0,d-1, r=d-c ; print1(f(c,r),",") ; ) ; ) ; }

A036801 Number of partitions satisfying (cn(0,5) <= cn(2,5) and cn(0,5) <= cn(3,5) and cn(0,5) <= cn(1,5) and cn(0,5) <= cn(4,5)).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 34, 44, 60, 76, 100, 128, 165, 207, 265, 330, 420, 519, 649, 799, 993, 1224, 1502, 1834, 2244, 2724, 3332, 4016, 4865, 5856, 7058, 8490, 10171, 12154, 14523, 17296, 20639, 24460, 29031, 34340, 40616, 47987, 56520, 66489, 78159
Offset: 0

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (0<=2 and 0<=3 and 0<=1 and 0<=4).

Crossrefs

Cf. A035959.

Programs

  • Mathematica
    okQ[p_] := Module[{c},
       c[k_] := c[k] = Count[Mod[p, 5], k];
       c[0] <= c[2] && c[0] <= c[3] && c[0] <= c[1] && c[0] <= c[4]];
    a[n_] := a[n] = Count[okQ /@ IntegerPartitions[n], True];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 45}] (* Jean-François Alcover, Oct 10 2024 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 10 2024
Previous Showing 31-34 of 34 results.