cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A201996 The number of endofunctions on n points such that all recurrent elements have at most 3 preimages and all nonrecurrent elements have at most 2 preimages.

Original entry on oeis.org

1, 1, 4, 27, 252, 3000, 43380, 737730, 14419440, 318381840, 7835486400, 212634298800, 6307073942400, 202983948367200, 7044249755743200, 262198957638618000, 10419369722457696000, 440257835691561888000, 19709455059507717504000, 931885122471464345184000, 46401644730376725229440000
Offset: 0

Views

Author

Geoffrey Critzer, Dec 07 2011

Keywords

Programs

  • Mathematica
    a = (1 - x - (1 - 2 x - x^2)^(1/2))/x; Range[0, 20]! CoefficientList[Series[1/(1 - a), {x, 0, 20}], x]

Formula

E.g.f.: 1/(1-A(x)) where A(x) is the e.g.f. for A036774.
a(n) ~ n! * (5/2)^n/5. - Vaclav Kotesovec, Sep 24 2013

A200793 The number of forests on n nodes of rooted labeled binary trees (each node has degree <=2).

Original entry on oeis.org

1, 1, 3, 16, 121, 1191, 14461, 209098, 3510921, 67175461, 1443249271, 34412298636, 901898694313, 25775139581491, 797824620178041, 26592701386533766, 949705032131053201, 36181186751341438473, 1464760631695118359051, 62798619981256526628136
Offset: 0

Views

Author

Geoffrey Critzer, Nov 22 2011

Keywords

Programs

  • Mathematica
    u=(1-x-((x-1)^2-2x^2)^(1/2))/x; Range[0,20]! CoefficientList[Series[Exp[u],{x,0,20}],x]

Formula

E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A036774.
a(n) ~ sqrt(2-sqrt(2)) * (1+sqrt(2))^(n+1) * exp(sqrt(2)-n) * n^(n-1). - Vaclav Kotesovec, Sep 25 2013

A336310 Sum of path lengths over all labeled rooted unordered binary trees.

Original entry on oeis.org

0, 0, 2, 24, 300, 4260, 69120, 1271340, 26233200, 601246800, 15171105600, 418203324000, 12509695598400, 403696590897600, 13982667790291200, 517482647165484000, 20381726051118432000, 851302665544050720000, 37587618060140244096000, 1749369290830388555328000, 85599487854917373617280000
Offset: 0

Views

Author

Geoffrey Critzer, Jul 17 2020

Keywords

Crossrefs

Cf. A336309, A036774 (row sums).

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[ Series[-(((-1 + Sqrt[1 - 2 z - z^2]) (-1 + z + Sqrt[1 - 2 z - z^2]))/(z (-1 + 2 z + z^2))), {z, 0, nn}], z]
  • PARI
    my(z='z+O('z^25)); concat([0,0], Vec(serlaplace(((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2))))) \\ Joerg Arndt, Jul 18 2020

Formula

E.g.f.: ((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2)).
a(n) = Sum_{k} A336309(n,k)*k, for n>=1.
a(n) ~ n!/2 * (sqrt(2) + 1)^(n+1) * (1 - sqrt((10-sqrt(2))/(Pi*n))). - Vaclav Kotesovec, Jul 17 2020
Previous Showing 11-13 of 13 results.