A057281
Coefficient triangle of polynomials (falling powers) related to Fibonacci convolutions. Companion triangle to A057282.
Original entry on oeis.org
1, 5, 16, 20, 160, 300, 75, 1075, 4850, 6840, 275, 6100, 48175, 159650, 186120, 1000, 31550, 379700, 2168650, 5846700, 5916240, 3625, 153875, 2605175, 22426825, 103057800, 238437900, 215717040, 13125, 720375, 16273875, 195469125
Offset: 0
k=2: F2(n)=((5*n^2+21*n+16)*F(n+2)+(5*n^2+27*n+34)*F(n+1))/50, F(n)=A000045(n); see A001628.
A091186
Triangle read by rows, in which n-th row gives expansion of x^n/((1-x)(1-x-x^2)^n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 4, 1, 1, 12, 18, 13, 5, 1, 1, 20, 38, 35, 19, 6, 1, 1, 33, 76, 86, 59, 26, 7, 1, 1, 54, 147, 197, 164, 91, 34, 8, 1, 1, 88, 277, 430, 420, 281, 132, 43, 9, 1, 1, 143, 512, 904, 1014, 792, 447, 183, 53, 10, 1, 1, 232, 932, 1846, 2338, 2087, 1371
Offset: 0
Rows begin {1},{1,1},{1,2,1},{1,4,3,1}...
Essentially the vertical partial sums of triangle
A037027.
A160905
Right hand side of Pascal rhombus A059317.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 9, 8, 3, 1, 29, 22, 13, 4, 1, 82, 72, 42, 19, 5, 1, 255, 218, 146, 70, 26, 6, 1, 773, 691, 476, 261, 107, 34, 7, 1, 2410, 2158, 1574, 914, 428, 154, 43, 8, 1, 7499, 6833, 5122, 3177, 1603, 659, 212, 53, 9, 1, 23575, 21612, 16706, 10816, 5867, 2628, 967
Offset: 0
Triangle begins:
1;
1, 1;
4, 2, 1;
9, 8, 3, 1;
29, 22, 13, 4, 1;
82, 72, 42, 19, 5, 1;
255, 218, 146, 70, 26, 6, 1;
...
A202193
Triangle read by rows: T(n,m) = coefficient of x^n in expansion of (x/(1 - x - x^2 - x^3 - x^4))^m.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 15, 28, 25, 14, 5, 1, 29, 62, 66, 44, 20, 6, 1, 56, 136, 165, 129, 70, 27, 7, 1, 108, 294, 401, 356, 225, 104, 35, 8, 1, 208, 628, 951, 944, 676, 363, 147, 44, 9, 1, 401, 1328, 2211, 2424, 1935, 1176, 553, 200, 54, 10, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 2, 1;
4, 5, 3, 1;
8, 12, 9, 4, 1;
15, 28, 25, 14, 5, 1;
29, 62, 66, 44, 20, 6, 1;
-
T(n,m):=if n=m then 1 else sum(sum((-1)^i*binomial(k,k-i)*binomial(n-m-4*i-1,k-1),i,0,(n-m-k)/4)*binomial(k+m-1,m-1),k,1,n-m);
A261507
Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 0
1,
1, 1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 5, 10, 10, 5, 1,
1, 8, 28, 56, 70, 56, 28, 8, 1,
1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1
-
Table[Binomial[Fibonacci[n], k], {n, 0, 8}, {k, 0, Fibonacci[n]}]//Flatten (* Jean-François Alcover, Nov 12 2015*)
-
v = vector(101,j,fibonacci(j)); i=0; n=0; while(n<100, for(k=0, n, print1(binomial(n, k), ", ","")); print(); i=i+1; n=v[i] ;)
A123262
Fibonacci-tribonacci triangle.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 3, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 0, 5, 8, 0, 0, 0, 0, 0, 1, 10, 13, 0, 0, 0, 0, 0, 0, 3, 20, 21, 0, 0, 0, 0, 0, 0, 0, 9, 38, 34, 0, 0, 0, 0, 0, 0, 0, 1, 22, 71, 55, 0, 0, 0, 0, 0, 0, 0, 0, 4, 51, 130, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 111, 235, 144
Offset: 0
Triangle begins:
.0;
.0, 1;
.0, 0, 1;
.0, 0, 0, 2;
.0, 0, 0, 1, 3;
.0, 0, 0, 0, 2, 5;
.0, 0, 0, 0, 0, 5, 8;
.0, 0, 0, 0, 0, 1, 10, 13;
.0, 0, 0, 0, 0, 0, 3, 20, 21;
.0, 0, 0, 0, 0, 0, 0, 9, 38, 34;
.0, 0, 0, 0, 0, 0, 0, 1, 22, 71, 55;
.0, 0, 0, 0, 0, 0, 0, 0, 4, 51, 130, 89;
.0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 111, 235, 144;
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 109, 126, 57, 12, 1, 360, 516, 306, 94, 15, 1, 1189, 2034, 1491, 600, 140, 18, 1, 3927, 7807, 6813, 3385, 1035, 195, 21, 1, 12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1, 42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1
Offset: 0
Triangle begins:
1;
3, 1;
10, 6, 1;
33, 29, 9, 1;
109, 126, 57, 12, 1;
360, 516, 306, 94, 15, 1;
1189, 2034, 1491, 600, 140, 18, 1;
3927, 7807, 6813, 3385, 1035, 195, 21, 1;
12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1;
42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1;
...
A181974
Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0
Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
Comments