A037310
Numbers whose base-3 and base-5 expansions have the same digit sum.
Original entry on oeis.org
1, 2, 6, 7, 8, 10, 11, 15, 16, 17, 20, 30, 31, 32, 40, 41, 55, 56, 60, 61, 62, 65, 70, 71, 78, 79, 100, 101, 105, 106, 107, 129, 135, 136, 137, 141, 142, 143, 145, 146, 153, 154, 159, 170, 177, 178, 179, 180, 181, 182, 186, 187, 188
Offset: 1
Cf.
A037301 (similar, based upon 2 and 3).
-
select(t -> convert(convert(t,base,3),`+`)=convert(convert(t,base,5),`+`), [$1..1000]); # Robert Israel, May 21 2015
-
Select[Range[200],Total[IntegerDigits[#,3]]==Total[IntegerDigits[#,5]]&] (* Harvey P. Dale, Jun 06 2016 *)
-
is(n)=sumdigits(n,3)==sumdigits(n,5) \\ Charles R Greathouse IV, May 21 2015
A212283
First a(n) > 1 whose sum of digits is the same in base 2 as in base n.
Original entry on oeis.org
2, 6, 4, 6, 12, 21, 8, 10, 20, 12, 14, 172, 30, 46, 16, 18, 36, 20, 22, 126, 46, 24, 26, 126, 28, 30, 58, 60, 120, 126, 32, 34, 68, 36, 38, 185, 78, 40, 42, 126, 44, 46, 90, 92, 138, 48, 50, 246, 52, 54, 106, 108, 56, 58, 114, 60, 62, 120, 182, 126, 188, 378
Offset: 2
Example: a(13) = 172 because 172 is the first number >1 such that its expansions in base 2 (10101100) and in base 13 (103) have the same sum of digits, namely 4.
-
sdn[n_]:=Module[{a=2},While[Total[IntegerDigits[a,2]]!=Total[ IntegerDigits[ a,n]], a++];a]; Array[sdn,70,2] (* Harvey P. Dale, May 29 2013 *)
A345296
Integers whose sum of digits in base b is the same for every prime b up to 17.
Original entry on oeis.org
0, 1, 70911040973874056146188543, 77332999599545910254098143, 139857575920160383360253101
Offset: 1
77332999599545910254098143 = 11111111110111111001100100111011111011111110101111110010001010111101111101011011011111_2 =
1022220111022022121010102021222111100222120112011112120_3 = 10124120314223101043140143200022120033_5 = 3300561310042202241132326120022_7 = 7940063801000011830000282_11 = 1B101304100834600A304201_13 = 120802053643008116067_17. In these bases, the sum of digits is 63, so 77332999599545910254098143 is a term.
A375258
Array read by antidiagonals: T(k,n) is the least positive integer whose sum of base-2 digits is k and sum of base-3 digits is n, or -1 if there is none.
Original entry on oeis.org
1, 2, 3, -1, 6, 81, 8, 5, 28, 27, -1, 20, 7, 30, 2187, 128, 17, 14, 15, 244, 243, -1, 68, 25, 46, 31, 246, -1, 512, 8193, 26, 23, 94, 63, 6570, 19683, -1, 80, 131, 78, 47, 126, 247, 2430, 59049, 2048, 1025, 134, 53, 62, 95, 254, 255, 19926, 531441, -1, 2050, 161, 212, 79, 222, 127, 766, 2431
Offset: 1
Array starts
1, 2, -1, 8, -1, 128, -1, 512, ...
3, 6, 5, 20, 17, 68, 8193, 80, ...
81, 28, 7, 14, 25, 26, 131, 134, ...
27, 30, 15, 46, 23, 78, 53, 212, ...
2187, 244, 31, 94, 47, 62, 79, 158, ...
243, 246, 63, 126, 95, 222, 125, 238, ...
-1, 6570, 247, 254, 127, 382, 223, 446, ...
19683, 2430, 255, 766, 507, 510, 383, 958, ...
-
T:= Matrix(8,8,-1):
for x from 1 to 10^5 do
k:= convert(convert(x,base,2),`+`);
n:= convert(convert(x,base,3),`+`);
if k <= 8 and n <= 8 and T[k,n] = -1 then T[k,n]:= x; fi
od:
T;
Comments