A355041 Numbers k such that A152763(2^k) < A152763(2^k-1).
14, 18, 30, 42, 60, 70, 82, 88, 106, 126, 130, 166, 168, 196, 213, 240, 258, 280, 282, 330
Offset: 1
Examples
14 is a term since A152763(2^14) = 4.457... * 10^721 < A152763(2^14-1) = 4.754... * 10^721. Note that Catalan(2^14)/Catalan(2^14-1) = 2 * 32767/16385, 32767/16385 = (7*31*151)/(5*29*113). We have v(N,5) = v(N,31) = v(N,113) = v(N,151) = 1, v(N,7) = 3, v(N,29) = 2 for N = binomial(2*(2^14-1),2^14-1), so A152763(2^14)/A152763(2^14-1) = 2 * ((3+1+1)/(3+1)) * ((1+1+1)/(1+1)) * ((1+1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) = 15/16 < 1. 18 is a term since A152763(2^18) = 1.178... * 10^8888 < A152763(2^18-1) = 2.121... * 10^8888. Note that Catalan(2^18)/Catalan(2^18-1) = 2 * 524287/262145, 524287/262145 = 524287/(5*13*37*109). We have v(N,5) = 5, q(N,13) = 2, v(N,37) = v(N,109) = 1, v(N,524287) = 0 for N = binomial(2*(2^18-1),2^18-1), so A152763(2^18)/A152763(2^18-1) = 2 * ((5-1+1)/(5+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((0+1+1)/(0+1)) = 5/9 < 1. Values of A152763(2^k)/A152763(2^k-1) for known terms: k = 14: 15/16 k = 18: 5/9 k = 30: 9/11 k = 42: 432/455 k = 60: 64/81 k = 70: 104/105 k = 82: 160/243 k = 88: 16/21 k = 106: 38/45 k = 126: 2275/2673 k = 130: 3773/6400 k = 166: 216/287 k = 168: 27/35 k = 196: 605/897 k = 213: 1683/1840 k = 240: 320/343 k = 258: 732875/810432
Programs
Extensions
a(18)-a(20) from Amiram Eldar, Jul 24 2024
Comments