cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A060823 4-wave sequence beginning with 2's with middles dropped.

Original entry on oeis.org

2, 2, 8, 20, 60, 170, 492, 1414, 4074, 11728, 33772, 97240, 279994, 806208, 2321386, 6684162, 19246280, 55417452, 159568196, 459458306, 1322957468, 3809304206, 10968454314, 31582405472, 90937912212, 261845282320, 753953441490
Offset: 2

Views

Author

Jason Earls, May 01 2001

Keywords

Crossrefs

Cf. A038197.

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1,-1},{2,2,8,20},30] (* Harvey P. Dale, Aug 31 2016 *)
  • PARI
    { for (n=2, 200, if (n>5, a=2*a1 + 3*a2 - a3 - a4; a4=a3; a3=a2; a2=a1; a1=a, if (n==2, a=a4=2, if (n==3, a=a3=2, if (n==4, a=a2=8, a=a1=20)))); write("b060823.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 12 2009

Formula

a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4). - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003
From R. J. Mathar, Jul 15 2009: (Start)
G.f.: -2*x^2*(-1+x+x^2)/((1+x)*(x^3-3*x+1)).
a(n) = 2*A006357(n-3). (End)

A060824 4-wave sequence beginning with 2s.

Original entry on oeis.org

2, 2, 2, 2, 4, 6, 8, 14, 18, 20, 38, 52, 60, 112, 150, 170, 320, 432, 492, 924, 1244, 1414, 2658, 3582, 4074, 7656, 10314, 11728, 22042, 29698, 33772, 63470, 85512, 97240, 182752, 246222, 279994, 526216, 708968, 806208, 1515176, 2041392, 2321386
Offset: 2

Views

Author

Jason Earls, May 01 2001

Keywords

Comments

Primes are the numbers >=2 which have no nontrivial divisor: a(p)=0.
Also: a(n)= A032741(n)-1, n>=2 (from number of divisors

Crossrefs

Cf. A038197.

Formula

a(n) = 2*A038197(n-2).
a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jan 12 2003
G.f.: -2*x^2*(x^5-2*x^4+2*x^3-x^2-1)/((x^2-x+1)*(x^9-3*x^3+1)). - Colin Barker, Nov 09 2012
Previous Showing 11-12 of 12 results.