cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A038472 Sums of 4 distinct powers of 4.

Original entry on oeis.org

85, 277, 325, 337, 340, 1045, 1093, 1105, 1108, 1285, 1297, 1300, 1345, 1348, 1360, 4117, 4165, 4177, 4180, 4357, 4369, 4372, 4417, 4420, 4432, 5125, 5137, 5140, 5185, 5188, 5200, 5377, 5380, 5392, 5440, 16405, 16453, 16465, 16468, 16645, 16657, 16660, 16705, 16708
Offset: 1

Views

Author

Keywords

Crossrefs

Base 4 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[4^Range[0, 7], {4}]] (* Amiram Eldar, Jul 13 2022 *)

Extensions

Offset corrected by Amiram Eldar, Jul 13 2022

A038476 Sums of 4 distinct powers of 5.

Original entry on oeis.org

156, 656, 756, 776, 780, 3156, 3256, 3276, 3280, 3756, 3776, 3780, 3876, 3880, 3900, 15656, 15756, 15776, 15780, 16256, 16276, 16280, 16376, 16380, 16400, 18756, 18776, 18780, 18876, 18880, 18900, 19376, 19380, 19400, 19500, 78156, 78256, 78276, 78280, 78756, 78776, 78780
Offset: 1

Views

Author

Keywords

Crossrefs

Base 5 interpretation of A038446.

Programs

  • Mathematica
    With[{upto=80000},Select[Total/@Subsets[5^Range[0,Floor[Surd[upto-31,5]]],{4}],#<=upto&]]//Union (* Harvey P. Dale, Mar 13 2019 *)

Extensions

Offset corrected by Amiram Eldar, Jul 13 2022

A038480 Sums of 4 distinct powers of 6.

Original entry on oeis.org

259, 1339, 1519, 1549, 1554, 7819, 7999, 8029, 8034, 9079, 9109, 9114, 9289, 9294, 9324, 46699, 46879, 46909, 46914, 47959, 47989, 47994, 48169, 48174, 48204, 54439, 54469, 54474, 54649, 54654, 54684, 55729, 55734, 55764, 55944, 279979, 280159, 280189, 280194
Offset: 1

Views

Author

Keywords

Crossrefs

Base-6 interpretation of A038446.

Programs

  • Mathematica
    Union[Total/@Subsets[6^Range[0,10],{4}]] (* Harvey P. Dale, Nov 05 2011 *)

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A038486 Sums of 4 distinct powers of 8.

Original entry on oeis.org

585, 4169, 4617, 4673, 4680, 32841, 33289, 33345, 33352, 36873, 36929, 36936, 37377, 37384, 37440, 262217, 262665, 262721, 262728, 266249, 266305, 266312, 266753, 266760, 266816, 294921, 294977, 294984, 295425, 295432, 295488, 299009, 299016, 299072, 299520, 2097225
Offset: 1

Views

Author

Keywords

Crossrefs

Base-8 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[8^Range[0, 6], {4}]] (* Amiram Eldar, Jul 14 2022 *)

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A038483 Sums of 4 distinct powers of 7.

Original entry on oeis.org

400, 2458, 2752, 2794, 2800, 16864, 17158, 17200, 17206, 19216, 19258, 19264, 19552, 19558, 19600, 117706, 118000, 118042, 118048, 120058, 120100, 120106, 120394, 120400, 120442, 134464, 134506, 134512, 134800, 134806, 134848, 136858, 136864, 136906, 137200, 823600
Offset: 1

Views

Author

Keywords

Crossrefs

Base-7 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[7^Range[0, 7], {4}]] (* Amiram Eldar, Jul 14 2022 *)

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A038489 Sums of 4 distinct powers of 9.

Original entry on oeis.org

820, 6652, 7300, 7372, 7380, 59140, 59788, 59860, 59868, 65620, 65692, 65700, 66340, 66348, 66420, 531532, 532180, 532252, 532260, 538012, 538084, 538092, 538732, 538740, 538812, 590500, 590572, 590580, 591220, 591228, 591300, 597052, 597060, 597132, 597780, 4783060
Offset: 1

Views

Author

Keywords

Crossrefs

Base-9 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[9^Range[0, 6], {4}]] (* Amiram Eldar, Jul 14 2022 *)
  • Python
    from itertools import islice
    def A038489_gen(): # generator of terms
        yield int(bin(n:=15)[2:],9)
        while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:],9)
    A038489_list = list(islice(A038489_gen(),30)) # Chai Wah Wu, Apr 05 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A268620 Numbers whose digital sum is a multiple of 4.

Original entry on oeis.org

0, 4, 8, 13, 17, 22, 26, 31, 35, 39, 40, 44, 48, 53, 57, 62, 66, 71, 75, 79, 80, 84, 88, 93, 97, 103, 107, 112, 116, 121, 125, 129, 130, 134, 138, 143, 147, 152, 156, 161, 165, 169, 170, 174, 178, 183, 187, 192, 196, 202, 206, 211, 215, 219, 220, 224, 228, 233, 237, 242, 246
Offset: 1

Views

Author

Bruno Berselli, Feb 09 2016

Keywords

Comments

a(1498) = 5999 is the smallest term that is congruent to 5 modulo 9.

Crossrefs

Cf. A007953, A061383 (supersequence).
Cf. numbers whose digital sum is a multiple of k: A054683 (k=2), A008585 (k=3), this sequence (k=4), A227793 (k=5).

Programs

  • Magma
    [n: n in [0..250] | IsIntegral(&+Intseq(n)/4)];
  • Maple
    select(t -> convert(convert(t,base,10),`+`) mod 4 = 0, [$1..1000]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[Range[0, 250], IntegerQ[Total[IntegerDigits[#]]/4] &]
Previous Showing 11-17 of 17 results.