cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A206330 Numbers that match polynomials irreducible over the integers.

Original entry on oeis.org

3, 4, 5, 6, 9, 10, 17, 18, 19, 20, 21, 22, 29, 30, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 69, 70, 73, 74, 77, 78, 81, 82, 83, 84, 87, 88, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 119, 120, 123
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2012

Keywords

Comments

Each n>1 matches a polynomial having integer coefficients
determined by the prime factorization of n. Let c be a
positive integer, and write
c=p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k), and
define p(n,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k.
If c/d is a rational number with GCD(c,d)=1, define
Q(c/d,x)=p(c,x)-p(d,x). Let c(n)/d(n) be the n-th
positive rational number given by the canonical
bijection; i.e., c(n)=A038568(n)/A038569(n).
Define P(0,x)=1 and P(n,x)=Q(c(n)/d(n),x). Polynomials
having nonnegative integer coefficients are matched to
the nonnegative integers as follows:
...
n .... P[n,x] .. irreducible
0 .... 0 ....... no
1 ... -1 ....... no
2 .... 1 ....... no
3 ... -x ....... yes
4 .... x ....... yes
5 ... 1-x ...... yes
6 .. -1+x ...... yes
7 .. -2 ........ no
8 ... 2 ........ no
9 .. -2+x ...... yes
10 .. 2-x ...... yes

Examples

			In the table under Comments, read "yes" for n=3,4,5,6,9,10.
		

Crossrefs

Cf. A206284 (polynomials over the positive integers),
A206331 (complement of A206330).

Programs

  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 1000;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
     == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    c[n_] := Module[{s = 1, k = 2, j = 1},
       While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1];
       s = s - 2*EulerPhi[k - 1];
       While[s <= n, If[GCD[j, k - 1]
          == 1, s = s + 2]; j = j + 1];
       If[s > n + 1, j - 1, k - 1]];
    d[n_] := Module[{s = 1, k = 2, j = 1},
       While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1];
       s = s - 2*EulerPhi[k - 1];
       While[s <= n, If[GCD[j, k - 1]
          == 1, s = s + 2]; j = j + 1];
       If[s > n + 1, k - 1, j - 1]];
    P[n_, x_] :=
     u[[c[n]]].b[-1 + Length[u[[c[n]]]]] -
      u[[d[n]]].b[-1 + Length[u[[d[n]]]]]
    TableForm[Table[{n, P[n, x], Factor[P[n, x]]},
       {n, 1, z/4}]];
    v = {}; Do[n++;
     If[IrreduciblePolynomialQ[P[n, x]], AppendTo[v, n]], {n, z/2}]
    v                            (* A206330 *)
    Complement[Range[0,200], v]  (* A206331 *)

A173509 Partial sums of A038568.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 25, 26, 31, 33, 38, 41, 46, 50, 55, 56, 62, 67, 73, 74, 81, 83, 90, 93, 100, 104, 111, 116, 123, 129, 136, 137, 145, 148, 156, 161, 169, 176, 184, 185, 194, 196, 205, 209, 218, 223, 232, 239, 248, 256, 265, 266, 276, 279, 289, 296
Offset: 0

Views

Author

Jonathan Vos Post, Feb 20 2010

Keywords

Comments

Partial sums of numerators in canonical bijection from positive integers to positive rationals. The companion sequence for denominators is A173467, summing A038569. The subsequence of squares in this partial sum begins: 1, 4, 25, 81, 100, 137, 169, 196, 256, 289, 576. The subsequence of primes in this partial sum begins: 2, 5, 13, x, 41, 67, 73, 83, 223, 239, 337, 353, 379, 401, 419, 449, 479, 491, 503, 563.

Examples

			a(93) = 1 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 4 + 3 + 4 + 1 + 5 + 2 + 5 + 3 + 5 + 4 + 5 + 1 + 6 + 5 + 6 + 1 + 7 + 2 + 7 + 3 + 7 + 4 + 7 + 5 + 7 + 6 + 7 + 1 + 8 + 3 + 8 + 5 + 8 + 7 + 8 + 1 + 9 + 2 + 9 + 4 + 9 + 5 + 9 + 7 + 9 + 8 + 9 + 1 + 10 + 3 + 10 + 7 + 10 + 9 + 10 + 1 + 11 + 2 + 11 + 3 + 11 + 4 + 11 + 5 + 11 + 6 + 11 + 7 + 11 + 8 + 11 + 9 + 11 + 10 + 11 + 1 + 12 + 5 + 12 + 7 + 12 + 11 + 12 + 1 + 13 + 2.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A038568(i).
Previous Showing 11-12 of 12 results.