A122035
Primes p = Prime[m] such that polynomial (1 + Sum[x^Prime[k],{k,1,m}]) factors over the integers.
Original entry on oeis.org
a(1) = 5 because Factor[1+x^2+x^3+x^5] = (x+1)*(x^2+1)*(x^2-x+1), but polynomials (1+x^2) and (1+x^2+x^3) do not factor over the integers.
a(2) = 17 because Factor[1+x^2+x^3+x^5+x^7+x^11+x^13+x^17] = (x^2+1)*(x^15-x^13+2x^11-x^9+x^7+x^3+1).
A349519
a(n)=x is the least prime with pi(x,4,3) - pi(x,4,1) = 1-n where pi(x,4,k) is the number of primes 4*j + k <= x.
Original entry on oeis.org
2, 26861, 616897, 616909, 616933, 623641, 623653, 623669, 623681, 12315529, 12315581, 12315613, 12315617, 12362653, 12362657, 12362717, 12362741, 12362981, 12362989, 12365033, 12365057, 12365153, 12365173, 12365201, 12366589, 951821281
Offset: 1
primes 4*j+1: 5, 13, 17, ...
4*j+3: 3, 7, 11, ...
d(x) = pi(x,4,3) - pi(x,4,1)
.
n x pi(x,4,3) pi(x,4,1) d(x)=1-n?
- ----- --------- --------- -----------
1 2 0 0 0=0 true a(1) = 2
2 3 1 0 1=-1 false a(2) != 3
2 5 1 1 2=-1 false a(2) != 5
...........................
2 26861 1472 1473 -1=-1 true a(3) = 26861
-
block(w:[2], su:0, sum:0, n:1, p:2, nmax: 25,
/* returns nmax terms */
while n
Comments