cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A129320 a(n) = A129319(n)/A129318(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 5, 15, 2, 5, 1, 3, 11, 2, 11, 1, 5, 5, 1, 4, 4, 1, 5, 2, 16, 10, 1, 6, 13, 4, 3, 9, 1, 1, 6, 2, 26, 2, 3, 23, 4, 1, 1, 6, 2, 3, 1, 11, 2, 1, 8, 14, 28, 8, 1, 7, 1, 23, 8, 20, 7, 2
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Examples

			a(6)=2 since A129319(n)/A129318(n)=30/15=2.
		

Crossrefs

A330999 Infinitary Ruth-Aaron numbers: numbers k such that A181894(k) = A181894(k+1).

Original entry on oeis.org

5, 77, 714, 948, 2431, 2491, 2996, 3450, 4293, 5405, 5560, 5885, 5959, 11124, 13869, 14587, 16932, 17080, 17346, 18468, 19551, 26642, 31931, 33019, 37925, 42250, 47544, 48635, 49240, 52554, 53192, 60048, 79248, 80837, 89979, 95709, 98119, 98644, 99163, 108458
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2020

Keywords

Comments

A variation of Ruth-Aaron numbers with "Fermi-Dirac primes" (or infinitary components) instead of prime divisors.

Examples

			5 is a term since A181894(5) = A181894(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); s[1] = 0; s[n] := Plus @@ (Flatten @ (f @@@ FactorInteger[n])); seq ={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq

A331000 Unitary Ruth-Aaron numbers: numbers k such that A008475(k) = A008475(k+1).

Original entry on oeis.org

5, 77, 714, 948, 2491, 2996, 3450, 4293, 5405, 6669, 9125, 10807, 13869, 14587, 16932, 17346, 19511, 19967, 23323, 26642, 27104, 31931, 33019, 37925, 41124, 43616, 48635, 52554, 55499, 58077, 58695, 79248, 80837, 86088, 89979, 95709, 98644, 99163, 108458, 117467
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2020

Keywords

Comments

A variation of Ruth-Aaron numbers with unitary prime-power divisors instead of prime divisors.

Examples

			5 is a term since A008475(5) = A008475(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    s[1] = 0; s[n_] := Plus @@ (Power @@@ FactorInteger[n]); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A178214 Numbers in A039753 with neither of their Ruth-Aaron pairs squarefree.

Original entry on oeis.org

7129199, 9867275, 18918704, 43009524, 43882488, 45828324, 126511280, 132082191, 150786063, 252625743, 285816464, 303792200, 313887275, 330130475, 336945392, 337795524, 361652075, 380035664, 480297824, 579423924, 647037215, 650012724, 756098624, 986677500, 1000308015, 1001438136, 1139325668, 1140314075, 1205629524, 1315277147
Offset: 1

Views

Author

Hans Havermann, Dec 19 2010

Keywords

Examples

			7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is a member of both A006145 (7+11+19+443 = 2+3+5+13+457) and A039752 (7+11+11+19+443 = 2+2+2+2+3+5+5+13+457) but neither 7129199 nor 7129200 is squarefree, so 7129199 is a member of this sequence.
		

Crossrefs

A327250 Numbers k such that s(k) = s(k+1), where s(k) is A059975.

Original entry on oeis.org

3, 80, 175, 272, 492, 860, 943, 6556, 6867, 7104, 7215, 14672, 17459, 21804, 22672, 24435, 24476, 26128, 30899, 34595, 39215, 41327, 45548, 49468, 56563, 57075, 63440, 63744, 67123, 72556, 78524, 87615, 90243, 104111, 109939, 113283, 113296, 115344, 121539, 131651
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2019

Keywords

Comments

Madeleine Farris named these numbers "Euler-totient Ruth-Aaron numbers" (in analogy to the Ruth-Aaron numbers, A039752). She proved that the number of terms <= x is O(x*(log(log(x))^4)/(log(x))^2) and that the sum of their reciprocals is bounded.

Examples

			3 is in the sequence since A059975(3) = A059975(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := e * (p-1); a[n_] := Plus @@ (f @@@ FactorInteger[n]); aQ[n_] := a[n] == a[n+1]; Select[Range[10^5], aQ]
  • PARI
    s(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2] * (f[i, 1] - 1));}
    lista(kmax) = {my(s1 = s(1), s2); for(k=2, kmax, s2 = s(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);} \\ Amiram Eldar, Apr 06 2023

A333801 Numbers k such that A008475(k)+1 = A008475(k+1).

Original entry on oeis.org

2, 3, 4, 7, 8, 16, 20, 31, 35, 127, 143, 208, 256, 650, 1479, 2464, 2623, 4233, 4345, 5183, 8099, 8191, 9424, 11024, 11919, 12099, 14905, 16159, 20220, 20800, 21716, 22194, 24335, 26123, 27335, 27390, 30457, 34945, 38180, 40425, 52206, 56563, 65536, 67123, 68264
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2020

Keywords

Comments

A variation of A064111 and A228126 with unitary prime-power divisors instead of prime divisors.

Examples

			4 is a term since A008475(4) + 1 = 4 + 1 = 5 = A008475(5).
		

Crossrefs

Programs

  • Mathematica
    s[1] = 0; s[n_] := Plus @@ (Power @@@ FactorInteger[n]); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 + 1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A333802 Numbers k such that A181894(k)+1 = A181894(k+1).

Original entry on oeis.org

2, 3, 4, 16, 20, 35, 143, 152, 208, 256, 650, 1624, 2232, 4233, 4345, 5368, 8099, 9424, 11024, 11919, 12099, 14905, 18424, 20220, 21716, 22194, 24335, 25592, 26123, 27390, 30457, 34945, 38180, 40425, 51992, 52206, 52947, 56563, 63712, 65536, 67123, 71154, 71284
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2020

Keywords

Comments

A variation of A064111 and A228126 with "Fermi-Dirac primes" (or infinitary components) instead of prime divisors.

Examples

			4 is a term since A181894(4) + 1 = 4 + 1 = 5 = A181894(5).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); s[1] = 0; s[n_] := Plus @@ (Flatten @ (f @@@ FactorInteger[n])); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 + 1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A101805 Number of Ruth-Aaron numbers (with multiplicity) less than 10^n.

Original entry on oeis.org

2, 4, 7, 20, 57, 149, 523, 1835, 6810, 26222, 106670, 444085
Offset: 1

Views

Author

Eric W. Weisstein, Dec 16 2004

Keywords

Crossrefs

Cf. A039752.

Extensions

Offset corrected and a(9)-a(12) from Donovan Johnson, Dec 14 2010

A175513 Numbers k for which 6k+1, 24k+5, 432k^2+72k-1, and 432k^2+90k-1 are all prime.

Original entry on oeis.org

1, 2, 13, 753, 767, 1336, 1771, 1773, 1911, 2487, 3527, 4192, 5061, 5343, 5973, 6341, 7062, 7777, 8932, 9153, 15301, 17976, 18713, 19543, 20318, 22253, 24068, 27461, 29416, 29502, 31383, 31593, 31616, 31693, 36026, 36087, 41456, 42966, 44711, 45453, 45493, 46766, 49067, 50602, 51212, 51393, 53193, 56762, 58267, 60332, 60918, 64126, 65727, 67872, 71266, 72011, 75861, 78728, 79652, 82978, 85246, 86207, 86988, 87793, 90873, 91753, 94173, 97297
Offset: 1

Views

Author

Hans Havermann, Dec 03 2010

Keywords

Comments

10368k^3+3888k^2+336k-5 is a Ruth-Aaron number (2, A039752).

References

  • C. Nelson, D. E. Penney and C. Pomerance, "714 and 715", J. Recreational Math. 7 (No. 2) 1974, 87-89.

Crossrefs

Cf. A039752.

Programs

  • Mathematica
    Select[Range[100000], PrimeQ[6 # + 1] && PrimeQ[24 # + 5] && PrimeQ[432*#^2 + 72*# - 1] && PrimeQ[432 #^2 + 90 # - 1] &]
    Select[Range[100000],AllTrue[{6#+1,24#+5,432#^2+72#-1,432#^2+90#-1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 24 2019 *)

A238605 Semiprimes n such that (n+1)/4 also is a semiprime.

Original entry on oeis.org

15, 35, 39, 55, 87, 155, 183, 203, 219, 247, 259, 295, 327, 339, 371, 471, 515, 535, 579, 583, 635, 707, 731, 803, 807, 835, 851, 871, 939, 995, 1011, 1047, 1059, 1067, 1111, 1147, 1191, 1195, 1203, 1207, 1211, 1219, 1255, 1315, 1339, 1355, 1363, 1383, 1507, 1527, 1563, 1591, 1643, 1651, 1687, 1707
Offset: 1

Views

Author

M. F. Hasler, Mar 01 2014

Keywords

Comments

A subsequence of Ruth-Aaron numbers A039752. The terms are by definition of the form n = 4k+3.

Crossrefs

Cf. A001414.

Programs

  • Mathematica
    Select[Range[2000],PrimeOmega[#]==PrimeOmega[(#+1)/4]==2&] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    forstep( n=3,999,4,bigomega(n)==2 & bigomega((n+1)/4)==2 && print1(n","))
Previous Showing 11-20 of 21 results. Next