cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A109409 Coefficients of polynomials triangular sequence produced by removing primes from the odd numbers in A028338.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 0, 2835, 3474, 684, 46, 1
Offset: 1

Views

Author

Roger L. Bagula, May 19 2007

Keywords

Comments

The row sums also appear to be new: b = Flatten[Join[{{1}}, Table[Apply[Plus, Abs[CoefficientList[Product[x + g[n], {n, 0, m}], x]]], {m, 0, 10}]]] {1, 2, 2, 2, 2, 20, 20, 20, 320, 320, 320, 7040} Since the row sum of A028338 is the double factorial A000165: this result seems to be a factorization of the double factorial numbers by relatively sparse nonprime odd numbers. It might be better to reverse the order of the coefficients to get the higher powers first.

Examples

			{1},
{1, 1},
{0, 1, 1},
{0, 0, 1, 1},
{0, 0, 0, 1, 1},
{0, 0, 0, 9, 10, 1},
{0, 0, 0, 0, 9, 10, 1},
{0, 0, 0, 0, 0, 9, 10, 1}
		

Crossrefs

Programs

  • Mathematica
    a = Join[{{1}}, Table[CoefficientList[Product[x + g[n], {n, 0, m}], x], {m, 0, 10}]]; Flatten[a]

Formula

p[n]=Product[If[PrimeQ[2*n+1]==false,x+(2*n+1),x] a(n) =CoefficientList[p[n],x]

A155718 Symmetrical form of A039683 using polynomials: p(x,n)=Product[x - (2*i), {i, 0, Floor[n/2]}]/x; t(n,m)=coefficients(p(x,n)+x^n*p(1/x,n)); t(n,m)=A039683(n,m)+A039683(n,n-m).

Original entry on oeis.org

2, -1, -1, 9, -12, 9, -47, 32, 32, -47, 385, -420, 280, -420, 385, -3839, 4354, -1460, -1460, 4354, -3839, 46081, -56490, 26684, -11760, 26684, -56490, 46081, -645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119, 10321921, -14026824
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2009

Keywords

Comments

Row sums are:
{2, -2, 6, -30, 210, -1890, 20790, -270270, 4054050, -68918850, 1309458150,...}.
The Stirling product form is: as even- odd factorization;
Product[x-i,{i,0,n}]=Product[x-(2*i),{i,0,Floor[n/2]}]*Product[x-(2*i+1),{i,0,Floor[n/2]}]

Examples

			{2},
{-1, -1},
{9, -12, 9},
{-47, 32, 32, -47},
{385, -420, 280, -420, 385},
{-3839, 4354, -1460, -1460, 4354, -3839},
{46081, -56490, 26684, -11760, 26684, -56490, 46081},
{-645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119},
{10321921, -14026824, 7562120, -2189376, 718368, -2189376, 7562120, -14026824, 10321921},
{-185794559, 262803366, -150102120, 46239920, -7606032, -7606032, 46239920, -150102120, 262803366, -185794559},
{3715891201, -5441863790, 3264920736, -1076561200, 221207888, -57731520, 221207888, -1076561200, 3264920736, -5441863790, 3715891201}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, b, a, b0];
    p[x_, n_] := Product[x - (2*i), {i, 0, Floor[n/2]}]/x;
    Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}];
    Flatten[%]

Formula

p(x,n)=Product[x - (2*i), {i, 0, Floor[n/2]}]/x;
t(n,m)=coefficients(p(x,n)+x^n*p(1/x,n));
t(n,m)=A039683(n,m)+A039683(n,n-m).
Previous Showing 11-12 of 12 results.