cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A179910 Primes with two embedded primes.

Original entry on oeis.org

23, 37, 53, 73, 127, 139, 157, 167, 193, 211, 227, 229, 241, 251, 263, 277, 307, 331, 383, 389, 419, 433, 439, 443, 457, 467, 503, 521, 541, 557, 563, 577, 587, 599, 619, 631, 643, 647, 659, 677, 683, 727, 751, 757, 761, 827, 829, 839, 857, 859, 883, 929
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

It appears that p having n embedded primes means that the set of prime integers generated by contiguous proper substrings of p has size n.
A079066(a(n)) = 2.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179910 n = a179910_list !! (n-1)
    a179910_list = map (a000040 . (+ 1)) $ elemIndices 2 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 160, f@# == 3 &]
    Select[ Prime@ Range@ 160, Function[ n, Length@ Select[ Union[ FromDigits /@ (Flatten[ Table[ Partition[#, k, 1], {k, Length@ # - 1}], 1] &)@ IntegerDigits@ n], PrimeQ]]@ # == 2 &] (* Michael Somos, Jan 13 2011 *)

A179911 Primes with three embedded primes.

Original entry on oeis.org

113, 131, 179, 197, 223, 233, 239, 257, 271, 283, 293, 311, 313, 337, 347, 353, 359, 367, 397, 431, 479, 547, 571, 593, 613, 617, 653, 719, 733, 739, 743, 773, 797, 823, 853, 937, 953, 971, 1013, 1031, 1097, 1103, 1117, 1129, 1151, 1163, 1213, 1217, 1229
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 3.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179911 n = a179911_list !! (n-1)
    a179911_list = map (a000040 . (+ 1)) $ elemIndices 3 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 210, f@# == 4 &]

A179912 Primes with four embedded primes.

Original entry on oeis.org

137, 173, 317, 373, 379, 523, 673, 1123, 1153, 1171, 1193, 1223, 1231, 1277, 1279, 1283, 1297, 1307, 1327, 1531, 1579, 1597, 1613, 1637, 1759, 1783, 1823, 1913, 1931, 2053, 2153, 2333, 2339, 2341, 2351, 2393, 2399, 2411, 2467, 2503, 2539, 2543, 2557
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 4.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179912 n = a179912_list !! (n-1)
    a179912_list = map (a000040 . (+ 1)) $ elemIndices 4 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 380, f@# == 5 &]

A179913 Primes with five embedded primes.

Original entry on oeis.org

1237, 1319, 1367, 1523, 1571, 1723, 1753, 1979, 1997, 2131, 2179, 2239, 2273, 2293, 2297, 2357, 2377, 2383, 2389, 2417, 2437, 2473, 2531, 2579, 2593, 2617, 2711, 2731, 2753, 2797, 3119, 3167, 3257, 3271, 3313, 3371, 3547, 3571, 3593, 3617, 3671, 3677
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 5.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179913 n = a179913_list !! (n-1)
    a179913_list = map (a000040 . (+ 1)) $ elemIndices 5 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 510, f@# == 6 &]

A179914 Primes with six embedded primes.

Original entry on oeis.org

1733, 1973, 2113, 2137, 2237, 2311, 2347, 2371, 2713, 2719, 2837, 2953, 2971, 3373, 3673, 3719, 3733, 3739, 4337, 4373, 4397, 4673, 5231, 5233, 5347, 5479, 6131, 6197, 6317, 6733, 6737, 7193, 7331, 7523, 8237, 8317, 8537, 9719, 10313, 10337, 10937
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 6.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179914 n = a179914_list !! (n-1)
    a179914_list = map (a000040 . (+ 1)) $ elemIndices 6 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1330, f@# == 7 &]

A179915 Primes with seven embedded primes.

Original entry on oeis.org

1373, 3137, 3797, 5237, 6173, 11173, 11311, 11353, 11719, 11731, 11971, 12113, 12239, 12347, 12377, 12953, 12973, 13127, 13177, 13217, 13537, 13597, 13679, 13709, 13711, 13723, 13729, 13751, 13757, 13759, 13799, 13967, 13997, 15137
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 7.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179915 n = a179915_list !! (n-1)
    a179915_list = map (a000040 . (+ 1)) $ elemIndices 7 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1770, f@# == 8 &]

A179916 Primes with eight embedded primes.

Original entry on oeis.org

12373, 12379, 12713, 13171, 15233, 17333, 17359, 17971, 19373, 19379, 21139, 21319, 22973, 23167, 23197, 23311, 23473, 23537, 23593, 23671, 23677, 23761, 23773, 23977, 24113, 24137, 24179, 24197, 24317, 24337, 24379, 24733, 25237
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 8.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179916 n = a179916_list !! (n-1)
    a179916_list = map (a000040 . (+ 1)) $ elemIndices 8 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 2790, f@# == 9 &]

A179917 Primes with nine embedded primes.

Original entry on oeis.org

11317, 19739, 19973, 21317, 21379, 22397, 22937, 23117, 23173, 23371, 23971, 24373, 26317, 27197, 29173, 29537, 32719, 33739, 33797, 37397, 39719, 51137, 51973, 52313, 53173, 53479, 53719, 57173, 57193, 61379, 61979, 63179, 66173
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 9.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179917 n = a179917_list !! (n-1)
    a179917_list = map (a000040 . (+ 1)) $ elemIndices 9 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 6610, f@# == 10 &]

A179918 Primes with ten embedded primes.

Original entry on oeis.org

23719, 31379, 52379, 111373, 111731, 111733, 112397, 113117, 113167, 113723, 113759, 113761, 115237, 117191, 117431, 121139, 122971, 123113, 123373, 123479, 123731, 124337, 126173, 126317, 127139, 127733, 127739, 127973, 129733, 131171
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2010

Keywords

Comments

A079066(a(n)) = 10.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a179918 n = a179918_list !! (n-1)
    a179918_list = map (a000040 . (+ 1)) $ elemIndices 10 a079066_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Mathematica
    f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 12280, f@# == 11 &]

A213299 Partial sums of A211681.

Original entry on oeis.org

2, 5, 10, 17, 40, 77, 130, 203, 440, 813, 1350, 2087, 4460, 8197, 13570, 20943, 44680, 82053, 135790, 209527, 446900, 820637, 1358010, 2095383, 4469120, 8206493, 13580230, 20953967, 44691340
Offset: 1

Views

Author

Hieronymus Fischer, Jun 08 2012

Keywords

Comments

The terms are primes for n = 1, 2, 4, 12, 22, 32 and possibly further n’s (Question).

Crossrefs

Formula

a(n) = ((3982 + 2709*k + 567*k^2 + 54*k^3)*10^m - 1980*m - 2200 - 495*k + 162*((n+1) mod 2) * (-1)^m * (-1)^floor(n/2))/891, where m=floor((n-1)/4), k=(n-1) mod 4.
G.f.: (2*x*(1+x^10) + 3*x^2*(1 + x^3 + x^5 + x^6) + 5*x^3*(1+x^6) + 7*x^4*(1+x^2))/((1-x)*(1-10*x^4)*(1-x^8)).
From Chai Wah Wu, Feb 08 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 9*a(n-4) - 18*a(n-5) + 9*a(n-6) + 10*a(n-8) - 20*a(n-9) + 10*a(n-10) for n > 10.
G.f.: x*(-2*x^7 + 2*x^6 - 5*x^5 + 2*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)^2*(x^4 + 1)*(10*x^4 - 1)). (End)

Extensions

Typo in g.f. corrected by Hieronymus Fischer, Sep 03 2012
Previous Showing 31-40 of 73 results. Next