cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.

A191305 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n having k hills (i.e., peaks at height 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 1, 3, 4, 3, 6, 7, 6, 1, 9, 12, 10, 4, 18, 23, 18, 10, 1, 28, 40, 33, 20, 5, 57, 76, 64, 39, 15, 1, 91, 134, 120, 76, 35, 6, 187, 257, 231, 152, 75, 21, 1, 304, 460, 433, 300, 156, 56, 7, 629, 888, 834, 595, 325, 132, 28, 1, 1037, 1606, 1572, 1164, 670, 294, 84, 8, 2157, 3115, 3035, 2292, 1375, 642, 217, 36, 1
Offset: 0

Views

Author

Emeric Deutsch, May 30 2011

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
Sum_{k>=0}k*T(n,k) = A045621(n-2).

Examples

			T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
  1;
  1;
  1,  1;
  1,  2;
  2,  3,  1;
  3,  4,  3;
  6,  7,  6,  1;
  9, 12, 10,  4;
		

Crossrefs

Programs

  • Maple
    G := 2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(C-1+t), where C=1+z^2*C^2 (and G=2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)), see Maple program).
Previous Showing 11-12 of 12 results.