A138749 a(n) = 2*a(n-1) - 5*a(n-2), with a(1) = -1, a(2) = -7.
-1, -7, -9, 17, 79, 73, -249, -863, -481, 3353, 9111, 1457, -42641, -92567, 28071, 518977, 897599, -799687, -6087369, -8176303, 14084239, 69049993, 67678791, -209892383, -758178721, -466895527, 2857102551, 8048682737, 1811852719, -36619708247
Offset: 1
Examples
a(5) = 79 = 2*a(4) - 5*a(3) = 2*17 - 5*(-9). a(5) = 79 = left term in [1,-2, 2,1]^5.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
Programs
-
Mathematica
Rest[CoefficientList[Series[-x*(1+5*x)/(1-2*x+5*x^2),{x,0,30}],x]] (* or *) LinearRecurrence[{2,-5},{-1,-7},30] (* James C. McMahon, Jun 21 2025 *)
-
PARI
a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])-imag(v[k]));} /* cf. A116483 */ /* Joerg Arndt, Jul 06 2011 */
Formula
a(n) = 2*a(n-1) - 5*a(n-2), n>3.
a(n) = left term in [1,-2; 2,1]^n * [1,1].
a(n) = (1/2)*(1+i)*((1+2*i)^n-i*(1-2*i)^n), where i=sqrt(-1). - Bruno Berselli, Jul 06 2011
Comments