cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A295770 Numbers k such that Bernoulli number B_{k} has denominator 4686.

Original entry on oeis.org

70, 350, 4970, 5110, 7070, 8890, 9590, 9730, 13790, 15610, 15890, 16030, 17990, 18410, 19810, 21770, 22190, 23170, 24290, 25550, 26530, 26810, 27230, 28070, 30310, 32270, 32690, 33530, 34930, 36470, 38990, 39830, 40390, 43190, 44450, 45010, 48650, 49070, 49630, 51730
Offset: 1

Views

Author

Paolo P. Lava, Nov 27 2017

Keywords

Comments

4686 = 2*3*11*71.
All terms are multiples of a(1) = 70.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 289.

Examples

			Bernoulli B_{70} is 1505381347333367003803076567377857208511438160235/4686, hence 70 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,4686);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 11, 71}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    70 Position[Array[Denominator@ BernoulliB[70 #] &, 10^3], 4686][[All, 1]] (* Michael De Vlieger, Nov 27 2017 *)
    Select[70*Range[750],Denominator[BernoulliB[#]]==4686&] (* Harvey P. Dale, Nov 23 2023 *)
  • PARI
    isok(n) = denominator(bernfrac(n)) == 4686; \\ Michel Marcus, Nov 27 2017
    
  • PARI
    lista(nn) = forstep(n=70, nn, 70, if(denominator(bernfrac(n)) == 4686, print1(n, ", "))) \\ Iain Fox, Nov 27 2017

A337596 Largest m such that k^n (mod m) is always either 0, +1, or -1.

Original entry on oeis.org

3, 5, 9, 16, 11, 13, 4, 32, 27, 25, 23, 16, 4, 29, 31, 64, 4, 37, 4, 41, 49, 23, 47, 32, 11, 53, 81, 29, 59, 61, 4, 128, 67, 8, 71, 73, 4, 8, 79, 41, 83, 49, 4, 89, 31, 47, 4, 97, 4, 125, 103, 53, 107, 109, 121, 113, 9, 59, 4, 61, 4, 8, 127, 256, 131, 67, 4, 137
Offset: 1

Views

Author

Elliott Line, Sep 02 2020

Keywords

Comments

For a given n, for all k, k^n mod a(n) will always be either 0, 1 or a(n)-1. This will not be true for numbers larger than a(n).
It appears that a(m) = 4 for m in A045979. - Michel Marcus, Sep 04 2020

Examples

			For n = 5 all fifth powers of natural numbers: 1,32,243,1024, etc. are either a multiple of 11, or 1 greater or 1 less than a multiple of 11. There is no greater number than 11 for which all fifth powers are at most 1 different from a multiple. So a(5) = 11.
		

Crossrefs

Cf. residues: A096008 (for n=2), A096087 (for n=3).

Extensions

More terms from Michel Marcus, Sep 04 2020
Previous Showing 41-42 of 42 results.