A295770 Numbers k such that Bernoulli number B_{k} has denominator 4686.
70, 350, 4970, 5110, 7070, 8890, 9590, 9730, 13790, 15610, 15890, 16030, 17990, 18410, 19810, 21770, 22190, 23170, 24290, 25550, 26530, 26810, 27230, 28070, 30310, 32270, 32690, 33530, 34930, 36470, 38990, 39830, 40390, 43190, 44450, 45010, 48650, 49070, 49630, 51730
Offset: 1
Examples
Bernoulli B_{70} is 1505381347333367003803076567377857208511438160235/4686, hence 70 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,4686); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 11, 71}: select(filter, [seq(i, i=1..10^5)]);
-
Mathematica
70 Position[Array[Denominator@ BernoulliB[70 #] &, 10^3], 4686][[All, 1]] (* Michael De Vlieger, Nov 27 2017 *) Select[70*Range[750],Denominator[BernoulliB[#]]==4686&] (* Harvey P. Dale, Nov 23 2023 *)
-
PARI
isok(n) = denominator(bernfrac(n)) == 4686; \\ Michel Marcus, Nov 27 2017
-
PARI
lista(nn) = forstep(n=70, nn, 70, if(denominator(bernfrac(n)) == 4686, print1(n, ", "))) \\ Iain Fox, Nov 27 2017
Comments