cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A176991 Triangle t(n,m) = binomial(n+m,m) - binomial(n-m,m), 1<=m<=n, read by rows.

Original entry on oeis.org

2, 2, 6, 2, 10, 20, 2, 14, 35, 70, 2, 18, 56, 126, 252, 2, 22, 83, 210, 462, 924, 2, 26, 116, 330, 792, 1716, 3432, 2, 30, 155, 494, 1287, 3003, 6435, 12870, 2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620, 2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756
Offset: 1

Views

Author

Roger L. Bagula, Dec 08 2010

Keywords

Comments

Row sums are binomial(2n+1,n+1)-1-A000071(n+1) = A001700(n)-A000045(n+1) = 2, 8, 32, 121, 454, 1703, 6414, 24276, 92323, 352627,....

Examples

			2;
2, 6;
2, 10, 20;
2, 14, 35, 70;
2, 18, 56, 126, 252;
2, 22, 83, 210, 462, 924;
2, 26, 116, 330, 792, 1716, 3432;
2, 30, 155, 494, 1287, 3003, 6435, 12870;
2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620;
2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756;
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = Binomial[n + (m - 1), (m - 1)] - Binomial[n - (m - 1), (m - 1)];
    Table[Table[t[n, m], {m, 2, n + 1}], {n, 1, 10}];
    Flatten[%]

Formula

t(n,m) = A046899(n,m) - A011973(n,m), 0<=m<=n/2.

A327809 Regular triangle, coefficients of the polynomial P(n)(x) = (-1)^(n+1)*(2*n+1)*binomial(2*n, n)*Sum_{i=0..n} x^i*binomial(n, i)/(n+i+1).

Original entry on oeis.org

-1, 3, 2, -10, -15, -6, 35, 84, 70, 20, -126, -420, -540, -315, -70, 462, 1980, 3465, 3080, 1386, 252, -1716, -9009, -20020, -24024, -16380, -6006, -924, 6435, 40040, 108108, 163800, 150150, 83160, 25740, 3432, -24310, -175032, -556920, -1021020, -1178100, -875160, -408408, -109395, -12870
Offset: 0

Views

Author

Michel Marcus, Sep 26 2019

Keywords

Examples

			Triangle begins:
     -1;
      3,     2;
    -10,   -15,     -6;
     35,    84,     70,     20;
   -126,  -420,   -540,   -315,   -70;
    462,  1980,   3465,   3080,   1386,   252;
  -1716, -9009, -20020, -24024, -16380, -6006, -924;
  ...
		

Crossrefs

Cf. A046899 (Q(x) polynomials, up to sign).
Cf. A001700 (1st column, up to sign), A033876 (right diagonal, up to sign).

Programs

  • PARI
    pol(n) = (-1)^(n+1)*(2*n+1)*binomial(2*n, n)*sum(i=0, n, x^i*binomial(n, i)/(n+i+1));
    row(n) = Vecrev(pol(n));
    tabl(nn) = for (n=0, nn, print(row(n)));
Previous Showing 21-22 of 22 results.