cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A173231 a(n) is the n-th number m such that 6*m-1 is composite plus the n-th number k such that 6*k+1 is composite.

Original entry on oeis.org

10, 19, 22, 30, 35, 40, 44, 48, 51, 59, 63, 66, 70, 73, 80, 87, 90, 93, 95, 102, 104, 106, 110, 115, 119, 122, 126, 132, 134, 138, 142, 147, 153, 156, 161, 165, 168, 171, 174, 176, 178, 184, 186, 193, 195, 198, 202, 204, 210, 216, 221, 224, 227, 230, 234, 236
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010

Keywords

Comments

Examples

			a(1) = 6 + 4 = 10;
a(2) = 11 + 8 = 19;
a(3) = 13 + 9 = 22.
		

Crossrefs

Programs

  • GAP
    A046953:=Filtered([1..250], k-> not IsPrime(6*k-1));;
    A046954:=Filtered([0..250], n-> not IsPrime(6*n+1));;
    Print(List([1..80], j->A046953[j]+A046954[j+1])); # G. C. Greubel, Feb 21 2019
  • Magma
    A046953:=[n: n in [1..250] | not IsPrime(6*n-1)];
    A046954:=[n: n in [0..250] | not IsPrime(6*n+1)];
    [A046953[n] + A046954[n+1]: n in [1..80]]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    A046953 := proc(n) if n = 1 then 6 ; else for a from procname(n-1)+1 do if not isprime(6*a-1) then return a; end if; end do: end if; end proc:
    A046954 := proc(n) if n = 1 then 0 ; else for a from procname(n-1)+1 do if not isprime(6*a+1) then return a; end if; end do: end if; end proc:
    A173231 := proc(n) A046953(n)+A046954(n+1) ; end proc:
    seq(A173231(n),n=1..120) ; # R. J. Mathar, May 02 2010
  • Mathematica
    A046953:= Select[Range[250], !PrimeQ[6#-1] &];
    A046954:= Select[Range[0, 250], !PrimeQ[6#+1] &];
    Table[A046953[[n]] +A046954[[n+1]], {n,1,80}]
  • Sage
    A046953=[n for n in (1..250) if not is_prime(6*n-1)];
    A046954=[n for n in (0..250) if not is_prime(6*n+1)];
    [A046953[n] + A046954[n+1] for n in (0..80)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) = A046953(n) + A046954(n+1).

Extensions

Entries checked by R. J. Mathar, May 02 2010

A343974 Even numbers k such that the two sets of primes in the Goldbach representation of k and k+2 as the sum of two odd primes do not intersect.

Original entry on oeis.org

38, 68, 80, 98, 122, 128, 146, 158, 164, 188, 206, 212, 218, 224, 248, 278, 290, 302, 308, 326, 332, 338, 344, 368, 374, 380, 398, 410, 416, 428, 440, 458, 476, 488, 500, 518, 530, 536, 542, 548, 554, 578, 584, 608, 614, 626, 632, 638, 668, 674, 692, 698, 710
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Jun 07 2021

Keywords

Comments

k is in the sequence iff the Goldbach representation of k as the sum of two odd primes does not contain any prime that is the lesser of a twin prime (A001359).
Conjecture: a(n) is congruent to 2 mod 6 with a(n)-3 not prime.

Examples

			The Goldbach representations of 80 and 82 as the sum of two odd primes are:
{{73, 7}, {67, 13}, {61, 19}, {43, 37}} and {{79, 3}, {71, 11}, {59, 23}, {53, 29}, {41, 41}}. The two sets {7, 13, 19, 37, 43, 61, 67, 73} and {3, 11, 23, 29, 41, 53, 59, 71, 79} do not intersect, so 80 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6,1000,2],!IntersectingQ@@(Flatten@Select[IntegerPartitions[#,2],And@@PrimeQ[#]&]&/@{#,#+2})&]

Formula

a(n) = 6*A046953(n) + 2 (conjectured). - Hugo Pfoertner, Jun 09 2021
Previous Showing 11-12 of 12 results.