A191732 Dispersion of A047202, (numbers >1 and congruent to 2 or 3 or 4 mod 5), by antidiagonals.
1, 2, 5, 3, 8, 6, 4, 13, 9, 10, 7, 22, 14, 17, 11, 12, 37, 23, 28, 18, 15, 19, 62, 38, 47, 29, 24, 16, 32, 103, 63, 78, 48, 39, 27, 20, 53, 172, 104, 129, 79, 64, 44, 33, 21, 88, 287, 173, 214, 132, 107, 73, 54, 34, 25, 147, 478, 288, 357, 219, 178, 122, 89
Offset: 1
Examples
Northwest corner: 1....2....3....4....7 5....8....13...22...37 6....9....14...23...38 10...17...28...47...78 11...18...29...48...79 15...24...39...64...107
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=3; c2=4; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A047202 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191732 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191732 *)
Comments