cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A317613 Permutation of the nonnegative integers: lodumo_4 of A047247.

Original entry on oeis.org

2, 3, 0, 1, 4, 5, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 18, 19, 16, 17, 20, 21, 22, 23, 26, 27, 24, 25, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 38, 39, 42, 43, 40, 41, 44, 45, 46, 47, 50, 51, 48, 49, 52, 53, 54, 55, 58, 59, 56, 57, 60, 61, 62, 63, 66, 67, 64
Offset: 0

Views

Author

Keywords

Comments

Write n in base 8, then apply the following substitution to the rightmost digit: '0'->'2, '1'->'3', and vice versa. Convert back to decimal.
A self-inverse permutation: a(a(n)) = n.
Array whose columns are, in this order, A047463, A047621, A047451 and A047522, read by rows.

Examples

			a(25) = a('3'1') = '3'3' = 27.
a(26) = a('3'2') = '3'0' = 24.
a(27) = a('3'3') = '3'1' = 25.
a(28) = a('3'4') = '3'4' = 28.
a(29) = a('3'5') = '3'5' = 29.
The sequence as array read by rows:
  A047463, A047621, A047451, A047522;
        2,       3,       0,       1;
        4,       5,       6,       7;
       10,      11,       8,       9;
       12,      13,      14,      15;
       18,      19,      16,      17;
       20,      21,      22,      23;
       26,      27,      24,      25;
       28,      29,      30,      31;
  ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1)))); // G. C. Greubel, Sep 25 2018
  • Mathematica
    Table[(4*(Floor[1/4 Mod[2*n + 4, 8]] - Floor[1/4 Mod[n + 2, 8]]) + 2*n)/2, {n, 0, 100}]
    f[n_] := Block[{id = IntegerDigits[n, 8]}, FromDigits[ Join[Most@ id /. {{} -> {0}}, {id[[-1]] /. {0 -> 2, 1 -> 3, 2 -> 0, 3 -> 1}}], 8]]; Array[f, 67, 0] (* or *)
    CoefficientList[ Series[(x^7 + x^5 + 3x^3 - 2x^2 - x + 2)/((x - 1)^2 (x^6 + x^4 + x^2 + 1)), {x, 0, 70}], x] (* or *)
    LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -1}, {2, 3, 0, 1, 4, 5, 6, 7}, 70] (* Robert G. Wilson v, Aug 01 2018 *)
  • Maxima
    makelist((4*(floor(mod(2*n + 4, 8)/4) - floor(mod(n + 2, 8)/4)) + 2*n)/2, n, 0, 100);
    
  • PARI
    my(x='x+O('x^100)); Vec((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1))) \\ G. C. Greubel, Sep 25 2018
    

Formula

a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8), n > 7.
a(n) = (4*(floor(((2*n + 4) mod 8)/4) - floor(((n + 2) mod 8)/4)) + 2*n)/2.
a(n) = lod_4(A047247(n+1)).
a(4*n) = A047463(n+1).
a(4*n+1) = A047621(n+1).
a(4*n+2) = A047451(n+1).
a(4*n+3) = A047522(n+1).
a(A042948(n)) = A047596(n+1).
a(A042964(n+1)) = A047551(n+1).
G.f.: (x^7 + x^5 + 3*x^3 - 2*x^2 - x + 2)/((x-1)^2 * (x^2+1) * (x^4+1)).
E.g.f.: x*exp(x) + cos(x) + sin(x) + cos(x/sqrt(2))*cosh(x/sqrt(2)) + (sqrt(2)*cos(x/sqrt(2)) - sin(x/sqrt(2)))*sinh(x/sqrt(2)).
a(n+8) = a(n) + 8 . - Philippe Deléham, Mar 09 2023
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/6 + log(2). - Amiram Eldar, Mar 12 2023

A160191 Lodumo_8 of Lucas numbers.

Original entry on oeis.org

2, 1, 3, 4, 7, 11, 10, 5, 15, 12, 19, 23, 18, 9, 27, 20, 31, 35, 26, 13, 39, 28, 43, 47, 34, 17, 51, 36, 55, 59, 42, 21, 63, 44, 67, 71, 50, 25, 75, 52, 79, 83, 58, 29, 87, 60, 91, 95, 66, 33, 99, 68, 103, 107, 74, 37, 111, 76, 115, 119, 82, 41, 123, 84, 127, 131, 90, 45, 135
Offset: 0

Views

Author

Philippe Deléham, May 04 2009

Keywords

Comments

Numbers congruent to {0,6} mod 8 are missing (see A047451).

Crossrefs

Formula

Lodumo_8 transform of A000032 (for definition see Transforms).
Conjecture: a(n)= +2*a(n-6) -a(n-12) . - R. J. Mathar, Oct 08 2011
Empirical g.f.: (x^11 +5*x^10 +4*x^9 +9*x^8 +3*x^7 +6*x^6 +11*x^5 +7*x^4 +4*x^3 +3*x^2 +x +2) / ((x -1)^2*(x +1)^2*(x^2 -x +1)^2*(x^2 +x +1)^2). - Colin Barker, Oct 04 2014
Previous Showing 11-12 of 12 results.