cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A047776 Number of chiral pairs of asymmetric dissectable polyhedra with n tetrahedral cells (type A).

Original entry on oeis.org

0, 0, 0, 0, 2, 11, 71, 370, 2005, 10682, 58167, 320116, 1789210, 10121965, 57933469, 334919626, 1953800059, 11489466014, 68053583772, 405713887061, 2433000197471, 14668527134167, 88869448492895, 540834097467624, 3304961431043989, 20273201718862728, 124798671079300720, 770762029389852807
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both asymmetric (type A) with n tetrahedral cells. The order of the symmetry group is 1. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 31 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047775 (type B), A047774 (type C). A047773 (type D), A047762 (type E), A047760 (type F), A047758 (type G), A047754 (type H), A047753 (type I), A047752 (type J), A047751 (type K), A047771 (type L), A047769 (type M), A047766 (type N|O), A047765 (type P), A047764 (type Q).

Programs

  • Mathematica
    Table[If[n < 5, 0, Binomial[3 n, 2 n + 2]/(3 n (n - 1))
        - If[OddQ[n], Binomial[3 n/2 - 1/2, n + 1] 3/(n - 1),
         7 Binomial[3 n/2, n + 1]/(3 n)]
        - Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 + 1/3]/(n - 1), 2,
         Binomial[n - 1, 2 n/3 + 2/3]/(n - 2), _, 0]
        + Switch[Mod[n, 4], 1, Binomial[3 n/4 - 3/4, n/2 + 1/2] 2/(3 (n - 1))
          + Binomial[3 n/4 + 1/4, n/2 + 3/2] 4/(n - 1) +
          Binomial[3 n/4 - 3/4, n/2 + 1/2] 4/(n + 3), 2,
         Binomial[3 n/4 - 1/2, n/2 + 1] 8/(n - 2), 3,
         Binomial[3 n/4 - 1/4, n/2 + 3/2] 12/(n - 3), 0,
         Binomial[3 n/4 - 1, n/2 + 1] 12/(n - 4)] +
        Switch[Mod[n, 6], 1, Binomial[n/2 - 1/2, n/3 + 2/3] 6/(n - 1), 2,
         Binomial[n/2 - 1, n/3 + 1/3] 4/(n - 2) +
          Binomial[n/2, n/3 + 4/3] 6/(n - 2) +
          Binomial[n/2 - 1, n/3 + 1/3] 6/(n + 4), 4,
         Binomial[n/2 - 1, n/3 + 2/3] 12/(n - 4), 5,
         Binomial[n/2 - 1/2, n/3 + 1/3] 9/(n + 4), _, 0] +
        Switch[Mod[n, 12], 2, -Binomial[n/4 - 1/2, n/6 + 2/3] 12/(n - 2), 5,
         Binomial[n/4 - 5/4, n/6 - 5/6] 2/(n + 1),
         8, -Binomial[n/4 - 1, n/6 - 1/3] 12/(n + 4), _, 0] -
        Switch[Mod[n, 24], 5, Binomial[n/8 - 5/8, n/12 - 5/12] 12/(n + 7), 17,
         Binomial[n/8 - 9/8, n/12 - 5/12] 24/(n + 7), , 0]]/2, {n, 1, 60}] (* _Robert A. Russell, Apr 09 2012 *)

Formula

From Robert A. Russell, Mar 31 2024: (Start)
a(n) = A001764(n)/(12(n+1)) - A047775(n)/2 - A047774(n)/3 - A047773(n)/6 - A047762(n)/2 - A047760(n)/4 - A047758(n)/4 - A047754(n)/4 - A047753(n)/8 - A047752(n)/12 - A047751(n)/24 - A047771(n)/2 - A047769(n)/2 - A047766(n)/6 - A047766(n)/6 - A047765(n)/4 - A047764(n)/12.
G.f.: (G(z^4) + G(z^6) - 2)/(2z) - z/3 + G(z)/6 - G(z)^2/12 + z*G(z)^4/24 - 7*G(z^2)/12 - 3z*G(z^2)^2/8 - z*G(z^3)/6 - z^2*G(z^3)^2/12 + G(z^4)/2 - z*G(z^4)/6 + (z*G(z^4)^2 + z^2*G(z^4)^2 + z*G(z^6))/2 + z^2*G(z^6)/12 + (z^2*G(z^6)^2 + z^4*G(z^6)^2 - z^2*G(z^12))/2 + z^5*G(z^12)/6 - (z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2)/2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)
Previous Showing 11-11 of 11 results.