A007173
Number of simplicial 3-clusters with n cells.
Original entry on oeis.org
1, 1, 1, 4, 10, 40, 171, 831, 4147, 21822, 117062, 642600, 3582322, 20256885, 115888201, 669911568, 3907720521, 22979343010, 136107859377, 811430160282, 4866004426320, 29337068299728, 177738920836446, 1081668278379000, 6609923004626478, 40546403939165805
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- L. W. Beineke and R. E. Pippert Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67
- CombOS - Combinatorial Object Server, generate planar graphs
- S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239.
- F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
Sum of achiral symmetry types (
A047775,
A047773,
A047760,
A047754,
A047753,
A047751,
A047771,
A047766 [type N],
A047765,
A047764) plus twice sum of chiral symmetry types (
A047776,
A047774,
A047762,
A047758,
A047752,
A047769,
A047766 [type O]) in Beineke article.
-
Table[Binomial[3 n, n]/(3 (2 n + 1) (2 n + 2)) + If[OddQ[n], Binomial[3 (n - 1)/2 + 1, n]/(n + 1), Binomial[3 n/2, n]/(n + 1)]/2 + 2 Switch[Mod[n, 3], 0, 0, 1, Binomial[n, (n - 1)/3]/n, 2, Binomial[n, (n - 2)/3]/n]/3, {n, 1, 30}] (* Robert A. Russell, Apr 11 2012 *)
A027610
The number of Apollonian networks (planar 3-trees) with n+3 vertices.
Original entry on oeis.org
1, 1, 1, 3, 7, 24, 93, 434, 2110, 11002, 58713, 321776, 1792133, 10131027, 57949430, 334970205, 1953890318, 11489753730, 68054102361, 405715557048, 2433003221232, 14668536954744, 88869466378593, 540834155878536, 3304961537938269, 20273202069859769
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- L. W. Beineke and R. E. Pippert Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- CombOS - Combinatorial Object Server, generate planar graphs
- S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239.
- Paul Jungeblut, Edge Guarding Plane Graphs, Master Thesis, Karlsruhe Institute of Technology (Germany, 2019).
- F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
- Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
Sum of
A047776,
A047775,
A047774,
A047773,
A047762,
A047760,
A047758,
A047754,
A047753,
A047752,
A047751,
A047771,
A047769,
A047766 (twice),
A047765,
A047764.
-
A001764 := proc(m) RETURN((3*m)!/(m!*(2*m+1)!)); end; # Gives A001764(m)
A047749 := proc(m) local x; if m mod 2 = 1 then x := (m-1)/2; RETURN((3*x+1)!/((x+1)!*(2*x+1)!)); fi; RETURN(A001764(m/2)); end; # Gives A047749(m)
A027610 := proc(n) local N; N := 0; N := N + A001764(n)/(12*(n+1)); if n mod 2 = 0 then N := N + 5/24*A001764(n/2); fi; if (n-1) mod 3 = 0 then N := N + 1/3*A001764((n-1)/3); fi; if (n-1) mod 4 = 0 then N := N + 1/4*A001764((n-1)/4); fi;
if (n-2) mod 6 = 0 then N := N + 1/6*A001764((n-2)/6); fi; N := N + 3/8*A047749(n); if (2*n-1) mod 3 = 0 then N := N + 1/6*A047749((2*n-1)/3); fi; RETURN(N); end;
-
Table[Binomial[3 n, 2 n]/(6 (2 n + 1) (2 n + 2)) + If[EvenQ[n], 7 Binomial[3 n/2, n]/(12 (n + 1)), 3 Binomial[3 n/2 - 1/2, n]/(4 (n + 1))] + Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 - 2/3]/(2 n/3 + 1/3), 2, Binomial[n - 1, 2 n/3 - 1/3]/(2 n/3 + 2/3), , 0]/3 + If[1 == Mod[n,4], Binomial[3 n/4 - 3/4, n/2 - 1/2]/(n/2 + 1/2), 0]/4 + If[2 == Mod[n, 6], Binomial[n/2 - 1, n/3 - 2/3]/(n/3 + 1/3), 0]/6, {n, 1, 30}] (* _Robert A. Russell, Apr 11 2012 *)
-
T(m)={if(m<0||denominator(m)!=1,0,(3*m)!/(m!*(2*m+1)!))};
U(k)={if(k<0||denominator(k)!=1,0,if(k%2,my(m=(k-1)/2);(3*m+1)!/((m+1)!*(2*m+1)!),T(k/2)))};
S(n)=T(n)/(12*(n+1))+5*T(n/2)/24+T((n-1)/3)/3+T((n-1)/4)/4+T((n-2)/6)/6+3*U(n)/8+U((2*n-1)/3)/6;
for(k=1,26,print1(S(k),", ")) \\ Hugo Pfoertner, Mar 07 2020
Noted the name "Apollonian network" by
Brendan McKay, Mar 08 2014
A371350
Number of chiral pairs of polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.
Original entry on oeis.org
0, 0, 0, 1, 3, 16, 78, 397, 2037, 10820, 58349, 320824, 1790189, 10125858, 57938771, 334941363, 1953830203, 11489589280, 68053757016, 405714603234, 2433001205088, 14668531344984, 88869454457853, 540834122500464
Offset: 1
-
Table[Switch[Mod[n,3],1,Binomial[n,(n-1)/3],2,Binomial[n,(n-2)/3],_,0]/(3n)+(Binomial[3n,n]/(6n+3)-If[OddQ[n],Binomial[3(n-1)/2+1,n],Binomial[3n/2,n]/3]-2If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/2],0]-2If[2==Mod[n,6],Binomial[n/2-1,n/3-2/3],0])/(4n+4),{n,30}]
Showing 1-3 of 3 results.
Comments