cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A001764 a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).

Original entry on oeis.org

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640, 50067108, 300830572, 1822766520, 11124755664, 68328754959, 422030545335, 2619631042665, 16332922290300, 102240109897695, 642312451217745, 4048514844039120, 25594403741131680, 162250238001816900
Offset: 0

Views

Author

Keywords

Comments

Smallest number of straight line crossing-free spanning trees on n points in the plane.
Number of dissections of some convex polygon by nonintersecting diagonals into polygons with an odd number of sides and having a total number of 2n+1 edges (sides and diagonals). - Emeric Deutsch, Mar 06 2002
Number of lattice paths of n East steps and 2n North steps from (0,0) to (n,2n) and lying weakly below the line y=2x. - David Callan, Mar 14 2004
With interpolated zeros, this has g.f. 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/(3*x) and a(n) = C(n+floor(n/2),floor(n/2))*C(floor(n/2),n-floor(n/2))/(n+1). This is the first column of the inverse of the Riordan array (1-x^2,x(1-x^2)) (essentially reversion of y-y^3). - Paul Barry, Feb 02 2005
Number of 12312-avoiding matchings on [2n].
Number of complete ternary trees with n internal nodes, or 3n edges.
Number of rooted plane trees with 2n edges, where every vertex has even outdegree ("even trees").
a(n) is the number of noncrossing partitions of [2n] with all blocks of even size. E.g.: a(2)=3 counts 12-34, 14-23, 1234. - David Callan, Mar 30 2007
Pfaff-Fuss-Catalan sequence C^{m}_n for m=3, see the Graham et al. reference, p. 347. eq. 7.66.
Also 3-Raney sequence, see the Graham et al. reference, p. 346-7.
The number of lattice paths from (0,0) to (2n,0) using an Up-step=(1,1) and a Down-step=(0,-2) and staying above the x-axis. E.g., a(2) = 3; UUUUDD, UUUDUD, UUDUUD. - Charles Moore (chamoore(AT)howard.edu), Jan 09 2008
a(n) is (conjecturally) the number of permutations of [n+1] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and end with an ascent. For example, a(4)=55 counts all 60 permutations of [5] that end with an ascent except 42315, 52314, 52413, 53412, all of which contain a 4-2-3-1 pattern and 42513. - David Callan, Jul 22 2008
Central terms of pendular triangle A167763. - Philippe Deléham, Nov 12 2009
With B(x,t)=x+t*x^3, the comp. inverse in x about 0 is A(x,t) = Sum_{j>=0} a(j) (-t)^j x^(2j+1). Let U(x,t)=(x-A(x,t))/t. Then DU(x,t)/Dt=dU/dt+U*dU/dx=0 and U(x,0)=x^3, i.e., U is a solution of the inviscid Burgers's, or Hopf, equation. Also U(x,t)=U(x-t*U(x,t),0) and dB(x,t)/dt = U(B(x,t),t) = x^3 = U(x,0). The characteristics for the Hopf equation are x(t) = x(0) + t*U(x(t),t) = x(0) + t*U(x(0),0) = x(0) + t*x(0)^3 = B(x(0),t). These results apply to all the Fuss-Catalan sequences with 3 replaced by n>0 and 2 by n-1 (e.g., A000108 with n=2 and A002293 with n=4), see also A086810, which can be generalized to A133437, for associahedra. - Tom Copeland, Feb 15 2014
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Kreweras lattice (noncrossing partitions ordered by refinement) of size n, see the Bernardi & Bonichon (2009) and Kreweras (1972) references. - Noam Zeilberger, Jun 01 2016
Number of sum-indecomposable (4231,42513)-avoiding permutations. Conjecturally, number of sum-indecomposable (2431,45231)-avoiding permutations. - Alexander Burstein, Oct 19 2017
a(n) is the number of topologically distinct endstates for the game Planted Brussels Sprouts on n vertices, see Ji and Propp link. - Caleb Ji, May 14 2018
Number of complete quadrillages of 2n+2-gons. See Baryshnikov p. 12. See also Nov 10 2014 comments in A134264. - Tom Copeland, Jun 04 2018
a(n) is the number of 2-regular words on the alphabet [n] that avoid the patterns 231 and 221. Equivalently, this is the number of 2-regular tortoise-sortable words on the alphabet [n] (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n steps of each type, with the condition that (1, 0) and (1, 1) steps alternate (starting with (1, 0)). - Helmut Prodinger, Apr 08 2019
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 312 and 1342. - Colin Defant, Jun 08 2019
The compositional inverse o.g.f. pair in Copeland's comment above are related to a pair of quantum fields in Balduf's thesis by Theorem 4.2 on p. 92. - Tom Copeland, Dec 13 2019
The sequences of Fuss-Catalan numbers, of which this is the first after the Catalan numbers A000108 (the next is A002293), appear in articles on random matrices and quantum physics. See Banica et al., Collins et al., and Mlotkowski et al. Interpretations of these sequences in terms of the cardinality of specific sets of noncrossing partitions are provided by A134264. - Tom Copeland, Dec 21 2019
Call C(p, [alpha], g) the number of partitions of a cyclically ordered set with p elements, of cyclic type [alpha], and of genus g (the genus g Faa di Bruno coefficients of type [alpha]). This sequence counts the genus 0 partitions (non-crossing, or planar, partitions) of p = 3n into n parts of length 3: a(n) = C(3n, [3^n], 0). For genus 1 see A371250, for genus 2 see A371251. - Robert Coquereaux, Mar 16 2024
a(n) is the total number of down steps before the first up step in all 2_1-Dyck paths of length 3*n for n > 0. A 2_1-Dyck path is a lattice path with steps (1,2), (1,-1) that starts and ends at y = 0 and does not go below the line y = -1. - Sarah Selkirk, May 10 2020
a(n) is the number of pairs (A<=B) of noncrossing partitions of [n]. - Francesca Aicardi, May 28 2022
a(n) is the number of parking functions of size n avoiding the patterns 231 and 321. - Lara Pudwell, Apr 10 2023
Number of rooted polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 3 of the family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 05 2024
The number of Apollonian networks (planar 3-trees) with n+3 vertices with a given base triangle. - Allan Bickle, Feb 20 2024
Number of rooted polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. A rooted polyomino has one external face identified, and chiral pairs are counted as two. a(n) = T(n) in the second Beineke and Pippert link. - Robert A. Russell, Mar 20 2024

Examples

			a(2) = 3 because the only dissections with 5 edges are given by a square dissected by any of the two diagonals and the pentagon with no dissecting diagonal.
G.f. = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347. See also the Pólya-Szegő reference.
  • W. Kuich, Languages and the enumeration of planted plane trees. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32, (1970), 268-280.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, p. 98.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001762, A001763, A002294 - A002296, A006013, A025174, A063548, A064017, A072247, A072248, A134264, A143603, A258708, A256311, A188687 (binomial transform), A346628 (inverse binomial transform).
A column of triangle A102537.
Bisection of A047749 and A047761.
Row sums of triangles A108410 and A108767.
Second column of triangle A062993.
Mod 3 = A113047.
2D Polyominoes: A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A000108 {3,oo}, A002293 {5,oo}.
3D Polyominoes: A007173 (oriented), A027610 (unoriented), A371350 (chiral), A371351 (achiral).
Cf. A130564 (for C(k, n) cases).

Programs

  • GAP
    List([0..25],n->Binomial(3*n,n)/(2*n+1)); # Muniru A Asiru, Oct 31 2018
    
  • Haskell
    a001764 n = a001764_list !! n
    a001764_list = 1 : [a258708 (2 * n) n | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    A001764 := n->binomial(3*n,n)/(2*n+1): seq(A001764(n), n=0..25);
    with(combstruct): BB:=[T,{T=Prod(Z,F),F=Sequence(B),B=Prod(F,Z,F)}, unlabeled]:seq(count(BB,size=i),i=0..22); # Zerinvary Lajos, Apr 22 2007
    with(combstruct):BB:=[S, {B = Prod(S,S,Z), S = Sequence(B)}, labelled]: seq(count(BB, size=n)/n!, n=0..21); # Zerinvary Lajos, Apr 25 2008
    n:=30:G:=series(RootOf(g = 1+x*g^3, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
    alias(PS=ListTools:-PartialSums): A001764List := proc(m) local A, P, n;
    A := [1,1]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A001764List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    InverseSeries[Series[y-y^3, {y, 0, 24}], x] (* then a(n)=y(2n+1)=ways to place non-crossing diagonals in convex (2n+4)-gon so as to create only quadrilateral tiles *) (* Len Smiley, Apr 08 2000 *)
    Table[Binomial[3n,n]/(2n+1),{n,0,25}] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / n! / (2*n + 1)!)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( serreverse( x - x^3 + O(x^(2*n + 2))), 2*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( m=1, n, A = 1 + x * A^3); polcoeff(A, n))};
    
  • PARI
    b=vector(22);b[1]=1;for(n=2,22,for(i=1,n-1,for(j=1,n-1,for(k=1,n-1,if((i-1)+(j-1)+(k-1)-(n-2),NULL,b[n]=b[n]+b[i]*b[j]*b[k])))));a(n)=b[n+1]; print1(a(0));for(n=1,21,print1(", ",a(n))) \\ Gerald McGarvey, Oct 08 2008
    
  • PARI
    Vec(1 + serreverse(x / (1+x)^3 + O(x^30))) \\ Gheorghe Coserea, Aug 05 2015
    
  • Python
    from math import comb
    def A001764(n): return comb(3*n,n)//(2*n+1) # Chai Wah Wu, Nov 10 2022
  • Sage
    def A001764_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if not b : R.append(D[h])
            else : h += 1
            b = not b
        return R
    A001764_list(22) # Peter Luschny, May 03 2012
    

Formula

From Karol A. Penson, Nov 08 2001: (Start)
G.f.: (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))).
E.g.f.: hypergeom([1/3, 2/3], [1, 3/2], 27/4*x).
Integral representation as n-th moment of a positive function on [0, 27/4]: a(n) = Integral_{x=0..27/4} (x^n*((1/12) * 3^(1/2) * 2^(1/3) * (2^(1/3)*(27 + 3 * sqrt(81 - 12*x))^(2/3) - 6 * x^(1/3))/(Pi * x^(2/3)*(27 + 3 * sqrt(81 - 12*x))^(1/3)))), n >= 0. This representation is unique. (End)
G.f. A(x) satisfies A(x) = 1+x*A(x)^3 = 1/(1-x*A(x)^2) [Cyvin (1998)]. - Ralf Stephan, Jun 30 2003
a(n) = n-th coefficient in expansion of power series P(n), where P(0) = 1, P(k+1) = 1/(1 - x*P(k)^2).
G.f. Rev(x/c(x))/x, where c(x) is the g.f. of A000108 (Rev=reversion of). - Paul Barry, Mar 26 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
a(n) = upper left term in M^n. Top row terms of M^n = (n+1)-th row of triangle A143603, with top row sums generating A006013: (1, 2, 7, 30, 143, 728, ...). (End)
Recurrence: a(0)=1; a(n) = Sum_{i=0..n-1, j=0..n-1-i} a(i)a(j)a(n-1-i-j) for n >= 1 (counts ternary trees by subtrees of the root). - David Callan, Nov 21 2011
G.f.: 1 + 6*x/(Q(0) - 6*x); Q(k) = 3*x*(3*k + 1)*(3*k + 2) + 2*(2*(k^2) + 5*k +3) - 6*x*(2*(k^2) + 5*k + 3)*(3*k + 4)*(3*k + 5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
D-finite with recurrence: 2*n*(2n+1)*a(n) - 3*(3n-1)*(3n-2)*a(n-1) = 0. - R. J. Mathar, Dec 14 2011
REVERT transform of A115140. BINOMIAL transform is A188687. SUMADJ transform of A188678. HANKEL transform is A051255. INVERT transform of A023053. INVERT transform is A098746. - Michael Somos, Apr 07 2012
(n + 1) * a(n) = A174687(n).
G.f.: F([2/3,4/3], [3/2], 27/4*x) / F([2/3,1/3], [1/2], (27/4)*x) where F() is the hypergeometric function. - Joerg Arndt, Sep 01 2012
a(n) = binomial(3*n+1, n)/(3*n+1) = A062993(n+1,1). - Robert FERREOL, Apr 03 2015
a(n) = A258708(2*n,n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
0 = a(n)*(-3188646*a(n+2) + 20312856*a(n+3) - 11379609*a(n+4) + 1437501*a(n+5)) + a(n+1)*(177147*a(n+2) - 2247831*a(n+3) + 1638648*a(n+4) - 238604*a(n+5)) + a(n+2)*(243*a(n+2) + 31497*a(n+3) - 43732*a(n+4) + 8288*a(n+5)) for all integer n. - Michael Somos, Jun 03 2016
a(n) ~ 3^(3*n + 1/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). - Ilya Gutkovskiy, Nov 21 2016
Given g.f. A(x), then A(1/8) = -1 + sqrt(5), A(2/27) = (-1 + sqrt(3))*3/2, A(4/27) = 3/2, A(3/64) = -2 + 2*sqrt(7/3), A(5/64) = (-1 + sqrt(5))*2/sqrt(5), etc. A(n^2/(n+1)^3) = (n+1)/n if n > 1. - Michael Somos, Jul 17 2018
From Peter Bala, Sep 14 2021: (Start)
A(x) = exp( Sum_{n >= 1} (1/3)*binomial(3*n,n)*x^n/n ).
The sequence defined by b(n) := [x^n] A(x)^n = A224274(n) for n >= 1 and satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 3. Cf. A060941. (End)
G.f.: 1/sqrt(B(x)+(1-6*x)/(9*B(x))+1/3), with B(x):=((27*x^2-18*x+2)/54-(x*sqrt((-(4-27*x))*x))/(2*3^(3/2)))^(1/3). - Vladimir Kruchinin, Sep 28 2021
x*A'(x)/A(x) = (A(x) - 1)/(- 2*A(x) + 3) = x + 5*x^2 + 28*x^3 + 165*x^4 + ... is the o.g.f. of A025174. Cf. A002293 - A002296. - Peter Bala, Feb 04 2022
a(n) = hypergeom([1 - n, -2*n], [2], 1). Row sums of A108767. - Peter Bala, Aug 30 2023
G.f.: z*exp(3*z*hypergeom([1, 1, 4/3, 5/3], [3/2, 2, 2], (27*z)/4)) + 1.
- Karol A. Penson, Dec 19 2023
G.f.: hypergeometric([1/3, 2/3], [3/2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = (3*n)! / (n!*(2*n+1)!). - Allan Bickle, Feb 20 2024
Sum_{n >= 0} a(n)*x^n/(1 + x)^(3*n+1) = 1. See A316371 and A346627. - Peter Bala, Jun 02 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 16 2025

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024

A000207 Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.

Original entry on oeis.org

1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the number of hexaflexagons of order n+2. - Mike Godfrey (m.godfrey(AT)umist.ac.uk), Feb 25 2002 (see the Kosters paper).
Number of normally non-isomorphic realizations of the associahedron of type II with dimension n in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of polyforms with n cells in the hyperbolic tiling with Schläfli symbol {3,oo}, not distinguishing enantiomorphs. - Thomas Anton, Jan 16 2019
A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 20 2024
A maximal outerplanar graph (MOP) has a plane embedding with all vertices on the exterior region and interior regions triangles. - Allan Bickle, Feb 25 2024

Examples

			E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
  • B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Column k=3 of A295260.
A row or column of the array in A169808.
Polyominoes: A001683(n+2) (oriented), A369314 (chiral), A208355(n-1) (achiral), A005036 {4,oo}, A007173 {3,3,oo}.
Cf. A097998, A097999, A098000 (labeled outerplanar graphs).
Cf. A111563, A111564, A111758, A111759, A111757 (unlabeled outerplanar graphs).

Programs

  • Maple
    A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end:
    A000207 := proc(n) option remember: local k, it1, it2;
    if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi:
    if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi:
    if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi:
    RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3)
    end:
    seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009)
    A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end:
    A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009
    G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
  • PARI
    A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009

Formula

a(n) = C(n)/(2*n) + C(n/2+1)/4 + C(k)/2 + C(n/3+1)/3 where C(n) = A000108(n-2) if n is an integer, 0 otherwise and k = (n+1)/2 if n is odd, k = n/2+1 if n is even. Thus C(2), C(3), C(4), C(5), ... are 1, 1, 2, 5, ...
G.f.: (12*(1+x-2*x^2) + (1-4*x)^(3/2) - 3*(3+2*x)*(1-4*x^2)^(1/2) - 4*(1-4*x^3)^(1/2))/(24*x^2). - Emeric Deutsch, Dec 19 2004, from the S. J. Cyvin et al. reference.
a(n) ~ A000108(n)/(2*n+4) ~ 4^n / (2 sqrt(n Pi)*(n + 1)*(n + 2)). - M. F. Hasler, Apr 19 2009
a(n) = A001683(n+2) - A369314(n) = (A001683(n+2) + A208355(n-1)) / 2 = A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
Beineke and Pippert have an explicit formula with six cases (based on the value of n mod 6). - Allan Bickle, Feb 25 2024

Extensions

More terms from James Sellers, Jul 10 2000

A027610 The number of Apollonian networks (planar 3-trees) with n+3 vertices.

Original entry on oeis.org

1, 1, 1, 3, 7, 24, 93, 434, 2110, 11002, 58713, 321776, 1792133, 10131027, 57949430, 334970205, 1953890318, 11489753730, 68054102361, 405715557048, 2433003221232, 14668536954744, 88869466378593, 540834155878536, 3304961537938269, 20273202069859769
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Number of chordal planar triangulations; also number of planar triangulations with maximal number of triangles; also number of graphs obtained from the tetrahedron by repeatedly inserting vertices of degree 3 into a triangular face; also number of uniquely 4-colorable planar graphs; also number of simplicial 3-clusters with n cells; also Apollonian networks with n+3 vertices.
Also arises in enumeration of spectral isomers of alkane systems (see Cyvin et al.). - N. J. A. Sloane, Aug 15 2006
Chordal planar triangulations: take planar triangulations on n nodes, divide them into classes according to how many triangles they contain (all have 2n-4 triangular faces but may have additional triangles); count triangulations in class with most triangles.
If mirror images are not taken as equivalent, A007173 is obtained instead. - Brendan McKay, Mar 08 2014
Number of unoriented polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Mar 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007173 (oriented), A371350 (chiral), A371351 (achiral), A001764 (rooted), A000207 {3,oo}, A182322 {3,3,3,oo}.

Programs

Formula

From Robert A. Russell, Mar 20 2024: (Start)
a(n) = C(3n,n)/(6*(2n+1)*(2n+2)) + ([0==n mod 2]*7*C(3n/2,n) + [1==n mod 2]*9*C((3n-1)/2,n)) / (12(n+1)) + [1==n mod 3]*C(n-1,(n-1)/3)/(2n+1) + [2==n mod 3]*C(n-1,(n-2)/3)/(2n+2) + [1==n mod 4]*C((3n-3)/4,(n-1)/2)/(2n+2) + [2==n mod 6]*C(n/2-1,(n-2)/3)/(2n+2).
a(n) = A007173(n) - A371350(n) = (A007173(n) + A371351(n))/2 = A371350(n) + A371351(n).
a(n) = h(3,n) in Table 8 of Hering link.
G.f.: (-16 + 4*G(z) - 2*G(z)^2 + z*G(z)^4 + 14*G(z^2) + 9z*G(z^2)^2 + 8z*G(z^3) + 4z^2*G(z^3)^2 + 6z*G(z^4) + 4z^2*G(z^6))/24, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

One additional term from Robert A. Russell, Apr 11 2012
Noted the name "Apollonian network" by Brendan McKay, Mar 08 2014
New name from Allan Bickle, Feb 21 2024

A047751 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type K.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type K achiral symmetry and n tetrahedral cells. The center of symmetry is the center of a tetrahedral cell (3); the order of the symmetry group is 24. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted).

Programs

Formula

a(1)=1, a(n)=0 unless n == 5 (mod 12); a(12m+5) = A047749(m).
G.f.: z + z^5*G(z^24) + z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

A371351 Number of achiral polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 37, 73, 182, 364, 952, 1944, 5169, 10659, 28842, 60115, 164450, 345345, 953814, 2016144, 5609760, 11920740, 33378072, 71250060, 200553733, 429757960, 1215177680, 2612635888, 7416503776
Offset: 1

Views

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of achiral simplicial 3-clusters or stack polytopes with n tetrahedral cells. An achiral polyomino is identical to its reflection.

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) in Beineke link.
Cf. A007173 (oriented), A027610 (oriented), A371350 (chiral), A001764 (rooted), A208355(n-1) {3,oo}, A182299 {3,3,3,oo}.

Programs

  • Mathematica
    Table[(If[OddQ[n],3Binomial[(3n-1)/2,n],2Binomial[3n/2,n]]+If[1==Mod[n,4],3Binomial[(3n-3)/4,(n-1)/2],0]+If[2==Mod[n,6],3Binomial[n/2-1,(n-2)/3],0])/(3n+3),{n,30}]

Formula

a(n) = ([0==n mod 2]*2*C(3n/2,n) + [1==n mod 2]*3*C((3n-1)/2,n) + [1==n mod4]*3*C((3n-3)/4,(n-1)/2) + [2==n mod6]*3*C(n/2-1,(n-2)/3)) / (3n+3).
a(n) = 2*A027610(n) - A007173(n) = A007173(n) - 2*A371350(n) = A027610(n) - A371350(n).
a(n) = 2*H(3,n) - h(3,n) in Table 8 of Hering link.
G.f.: (-4 + 4*G(z^2) + 3z*G(z^2)^2 + 3z*G(z^4) + 2z^2*G(z^6)) / 6, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764.

A047753 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type I.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 0, 12, 0, 0, 0, 29, 0, 0, 0, 55, 0, 0, 0, 143, 0, 0, 0, 271, 0, 0, 0, 728, 0, 0, 0, 1428, 0, 0, 0, 3873, 0, 0, 0, 7752, 0, 0, 0, 21318, 0, 0, 0, 43256, 0, 0, 0, 120175, 0, 0, 0, 246675, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type I achiral symmetry and n tetrahedral cells. The center of symmetry is the center of a tetrahedral cell (3.1); the order of the symmetry group is 8. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A047767.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047751 (type K), A047749 (type U).

Programs

  • Mathematica
    Table[Switch[Mod[n,8],1,4Binomial[(3n-3)/8,(n-1)/8]/(n+3)-If[17==Mod[n,24],24Binomial[(n-9)/8,(n-17)/24]/(n+7),0],5,4Binomial[(3n-7)/8,(n+3)/8]/(n-1)-If[5==Mod[n,24],12Binomial[(n-5)/8,(n-5)/12]/(n+7),0],,0]-Boole[1==n],{n,50}] (* _Robert A. Russell, Mar 22 2024 *)

Formula

If n=4m+1 then A047749(m) - A047751(n), otherwise 0.
G.f.: z*G(z^8) + z^5*G(z^8)^2 - z - z^5*G(z^24) - z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

A047764 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type Q.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 143, 0, 0, 0, 0, 0, 273, 0, 0, 0, 0, 0, 728, 0, 0, 0, 0, 0, 1428, 0, 0, 0, 0, 0, 3876, 0, 0, 0, 0, 0, 7752
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type Q achiral symmetry and n tetrahedral cells. The center of symmetry is the center of a tetrahedral face (2.10); the order of the symmetry group is 12. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U).

Programs

Formula

If n=6m+2 then A047749((n-2)/6), otherwise 0.
G.f.: z^2*G(z^12) + z^8*G(z^12)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

A371350 Number of chiral pairs of polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

0, 0, 0, 1, 3, 16, 78, 397, 2037, 10820, 58349, 320824, 1790189, 10125858, 57938771, 334941363, 1953830203, 11489589280, 68053757016, 405714603234, 2433001205088, 14668531344984, 88869454457853, 540834122500464
Offset: 1

Views

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of chiral pairs of simplicial 3-clusters or stack polytopes with n tetrahedral cells. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Sum of chiral symmetry types (A047776, A047774, A047762, A047758, A047752, A047769, A047766 [type O]) in Beineke article.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A369314 {3,oo}, A369474 {3,3,3,oo}.

Programs

  • Mathematica
    Table[Switch[Mod[n,3],1,Binomial[n,(n-1)/3],2,Binomial[n,(n-2)/3],_,0]/(3n)+(Binomial[3n,n]/(6n+3)-If[OddQ[n],Binomial[3(n-1)/2+1,n],Binomial[3n/2,n]/3]-2If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/2],0]-2If[2==Mod[n,6],Binomial[n/2-1,n/3-2/3],0])/(4n+4),{n,30}]

Formula

a(n) = A007173(n) - A027610(n) = (A007173(n) - A371351(n))/2 = A027610(n) - A371351(n).
a(n) = h(3,n) - H(3,n) in Table 8 of Hering link.
G.f.: (4*G(z) - 2*G(z)^2 + z*G(z)^4 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*(4 G(z^3) + 2z*G(z^3)^2 - 3*G(z^4) - 2z*G(z^6))) / 24.

A047766 Number of dissectable polyhedra with n tetrahedral cells with symmetry of type N or chiral pairs with symmetry of type O.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 133, 0, 0, 0, 0, 0, 708, 0, 0, 0, 0, 0, 3861, 0, 0, 0, 0, 0, 21604, 0, 0, 0, 0, 0, 123266, 0, 0, 0, 0, 0, 715221, 0, 0, 0, 0, 0, 4206956, 0, 0, 0, 0, 0, 25032840, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Two of 17 different symmetry types comprising A007173 and A027610. Type N is one of 10 for A371351; type O one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type N achiral symmetry or type O chiral symmetry and n tetrahedral cells. The axis of threefold rotational symmetry is the altitude of a tetrahedron (32); the order of the symmetry group is 6. For type N, the two rooted polyominoes sharing the central face are a chiral pair reflected in that face; for type O they have the same orientation. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A047768.
Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A371351 (achiral), A001764 (rooted), A047764 (type Q).

Programs

  • Mathematica
    Table[Switch[Mod[n,12],2,3Binomial[(n-2)/2,(n-2)/6]/(2n+2)-3Binomial[(n-2)/4,(n-2)/12]/(n+4),8,3Binomial[(n-2)/2,(n-2)/6]/(2n+2)-6Binomial[(n-4)/4,(n-2)/6]/(n+4),,0],{n,50}] (* _Robert A. Russell, Mar 22 2024 *)

Formula

If n=6m+2 then (1/2)*(A001764(m) - A047764(n)), otherwise 0.
G.f.: (z^2*G(z^6) - z^2*G(z^12) - z^8*G(z^12)^2) / 2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

Extensions

2nd A-number in the formula corrected by R. J. Mathar, Oct 21 2008
Showing 1-10 of 23 results. Next